ZHANG Shi-sheng, WANG Xiong-rui, H. W. Joseph LEE, Chi Kin CHAN. Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011
Citation: ZHANG Shi-sheng, WANG Xiong-rui, H. W. Joseph LEE, Chi Kin CHAN. Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011

Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications

doi: 10.3879/j.issn.1000-0887.2011.02.011
  • Received Date: 2010-10-02
  • Rev Recd Date: 2011-01-06
  • Publish Date: 2011-02-15
  • A viscosity method for a hierarchical fixed point approach to variational inequality problems was presented,which was used to solve variational inequalities where the involving mappings were nonexpansive and the solutions were sought in the set of the fixed points of another nonexpansive mapping. As applications,the results were utilized to study the monotone variational inequality problem,convex programming problem,hierarchical minimization problem and quadratic minimization problem over fixed point sets.
  • loading
  • [1]
    Goebel K, Kirk W A. Topics in Metric Fixed Point Theory[M].Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
    [2]
    Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems, 2004, 20(1): 103-120. doi: 10.1088/0266-5611/20/1/006
    [3]
    Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. J Math Anal Appl, 2007, 327(2): 1244-1256. doi: 10.1016/j.jmaa.2006.05.010
    [4]
    Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[J]. J Inequalities and Appl, 2009, Article ID 208692, 13 pages. doi: 10.1155/2009/208692.
    [5]
    Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities[J]. Bull Austral Math Soc, 2009, 80(1): 117-124. doi: 10.1017/S0004972709000082
    [6]
    Mainge P E,Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3): 529-538.
    [7]
    Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space[J]. J Math Anal Appl, 2006, 318(1): 43-52. doi: 10.1016/j.jmaa.2005.05.028
    [8]
    Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2007, 23(4): 1635-1640. doi: 10.1088/0266-5611/23/4/015
    [9]
    Solodov M. An explicit descent method for bilevel convex optimization[J]. J Convex Anal, 2007, 14(2): 227-237.
    [10]
    Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2008, 24(1): 15015-15022. doi: 10.1088/0266-5611/24/1/015015
    [11]
    Xu H K. A variable Krasnoselski-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems, 2006, 22(6): 2021-2034. doi: 10.1088/0266-5611/22/6/007
    [12]
    Xu H K. Viscosity methods for hierarchical fixed point approach to variational inequalities[J]. Taiwanese J Math, 2010, 14(2): 463-478.
    [13]
    Xu H K. Iterative algorithms for nonlinear operators[J]. J London Math Soc, 2002, 66(1): 240-252. doi: 10.1112/S0024610702003332
    [14]
    Lions P L. Two remarks on the convergence of convex functions and monotone operators[J]. Nonlinear Anal, 1978, 2(5): 553-562. doi: 10.1016/0362-546X(78)90003-2
    [15]
    Bruck Jr R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces[J]. Trans Amer Math Soc, 1973, 179: 251-262. doi: 10.1090/S0002-9947-1973-0324491-8
    [16]
    Yamada I, Ogura N. Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings[J]. Numer Func Anal Optim, 2004, 25(7): 619-655.
    [17]
    Luo Z Q, Pang J S, Ralph D. Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
    [18]
    Cabot A. Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[J]. SIAM J Optim, 2005, 15(2): 555-572. doi: 10.1137/S105262340343467X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1862) PDF downloads(942) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return