Muhammad Taj, ZHANG Jun-qian. Buckling of Embedded Microtubules in Elastic Medium[J]. Applied Mathematics and Mechanics, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004
Citation: Muhammad Taj, ZHANG Jun-qian. Buckling of Embedded Microtubules in Elastic Medium[J]. Applied Mathematics and Mechanics, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004

Buckling of Embedded Microtubules in Elastic Medium

doi: 10.3879/j.issn.1000-0887.2011.03.004
  • Received Date: 2010-09-21
  • Rev Recd Date: 2011-01-21
  • Publish Date: 2011-03-15
  • Motivated by the application of Winkler-like model for buckling analysis of embedded carbon nanotubes,an orthotropic Winkler-like model was developed to study buckling behavior of embedded cytoskeletal microtubules within cytoplasm.Experimental observations of buckling of embedded cytoskeletal microtubules reveal that embedded microtubules bear a large compressive force as compared to free microtubules.Our theoretical model predicts that embedded microtubules in elastic medium bear large compressive forces than free microtubules.The estimated critical pressure is found not only in good agreement with the experimental values of pressure-induced buckling of microtubules[Needleman D J,Ojeda-Lopez M A,Kai Ewert U R,Miller H P,Wilson L,Safiny C R.Biophys J,2005,89(5):3410-3423; Needleman D J,Ojeda-Lopez M A,Raviv U,Ewert K,Jones J B,Miller H P L,Wilso L,Safinya C R.Phys Rev Lett,2004,93(19):1981041-1981044.].But also,due to mechanical coupling of microtubules with surrounding elastic medium,critical buckling force has increased considerably,which well explains the theory that mechanical coupling of microtubules with the elastic medium increases compressive forces that microtubules can sustain[Brangwynne C P,MacKintosh F C,Kumar S,Geisse N A,Talbot J,Mahadevan L,Parker K K,Ingber D E,Weitz D A.The Journal of Cell Biology,2006,173 (5):733-741] suggesting that the present model is a good approximation for buckling analysis of embedded microtubules.
  • loading
  • [1]
    Nogales E. Structural insights into microtubule function[J].Annu Rev Biochem, 2000, 69(1): 277-302. doi: 10.1146/annurev.biochem.69.1.277
    [2]
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Roberts P.Molecular Biology of the Cell[M]. 4th ed. New York:Garland Science Publishing, 2005, 1463.
    [3]
    Carter N J, Cross R A. Mechanics of the kinesin step[J] Nature, 2005, 435(3):308-312.
    [4]
    Schoutens J E J. A model describing bending in flagella[J]. J Biol Phys, 2004, 30(2): 97-122. doi: 10.1023/B:JOBP.0000035852.95326.79
    [5]
    Boal D. Mechanics of the Cell[M]. Cambridge: Cambridge University Press, 2002.
    [6]
    Kolodney M S, Wysolmerski R B. Isometric contraction by fibroblasts and Endothelial cells in tissue culture: a quantitative study[J]. J Cell Biol, 1992, 117(1):73-82. doi: 10.1083/jcb.117.1.73
    [7]
    Stamenovic D, Liang Z L, Chen J X, Wang N. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells[J]. J Appl Physiol, 2002, 92(4): 1443-1450.
    [8]
    Zheng J, Buxbaum R E, Heidemann S R. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation[J] J Cell Sci,1993, 104(4): 1239-1250.
    [9]
    Odde D J, Ma L, Briggs A H, Demarco A, Kirschner M W. Microtubule bending and breaking in living cells[J]. J Cell Sci, 1999, 112(19): 3283-3288.
    [10]
    Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Miller H P , Wilson L, Safinya C R. Radial compression of microtubules and the mechanism of action of taxol and associated proteins[J].Biophys J, 2005, 89(5): 3410-3423. doi: 10.1529/biophysj.104.057679
    [11]
    Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Jones J B, Miller H P L, Wilso L, Safinya C R. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions[J]. Phys Rev Lett, 2004, 93(19): 1981041-1981044.
    [12]
    Felgner H, Frank R, Biernat J, Mandelkow E M, Madelkow E, Ludin B, Matus A, Schliwa M. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules[J]. J Cell Biol,1997, 138(5):1067-1075. doi: 10.1083/jcb.138.5.1067
    [13]
    Brangwynne C P, MacKintosh F C, Kumar S, Geisse N A, Talbot J, Mahadevan L, Parker K K, Ingber D E, Weitz D A. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement[J]. The Journal of Cell Biology, 2006, 173(5): 733-741. doi: 10.1083/jcb.200601060
    [14]
    Li T. A mechanics model of microtubule buckling in living cells[J]. J Biomech, 2008, 41 (8): 1722-1729. doi: 10.1016/j.jbiomech.2008.03.003
    [15]
    Wang C Y, Ru C Q, Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules[J]. Physical Review E, 2006, 74(5): 052901. doi: 10.1103/PhysRevE.74.052901
    [16]
    Kis A, Kasas S, Babicˇ B, Kulik A J, Benot W, Briggs G A D, Schnenberger C, Catsicas S, Forr L. Nanomechanics of microtubules[J]. Physical Review Letters, 2002, 89(24): 248101. doi: 10.1103/PhysRevLett.89.248101
    [17]
    Nogales E, Whittaker M, Milligan R A, Downing K H. High-resolution model of the microtubule[J] Cell, 1999, 96(1): 79-88.
    [18]
    Qian X S, Zhang J Q, Ru C Q. Wave propagation in orthotropic microtubules[J]. J Appl Phys, 2007, 101(8): 084702. doi: 10.1063/1.2717573
    [19]
    Lourie O, Cox D M, Wagner H D. Buckling and collapse of embedded carbon nanotubes[J]. Phys Rev Lett, 1998, 81(8): 1638-1641. doi: 10.1103/PhysRevLett.81.1638
    [20]
    Yoon J, Ru C Q, Mioduchowski A. Sound wave propagation in multiwall carbon nanotubes [J]. J Appl Phys, 2003, 93(8): 4801-4806. doi: 10.1063/1.1559932
    [21]
    Ventsel E, Krauthammer T. Thin Plates and Shells[M]. New York: Marcel Dekker, 2004.
    [22]
    Pablo de P J, Schaap I A T , Mackintosh F C, Schmidt C F. Deformation and collapse of microtubules on the nanometer scale[J]. Physical Review Letters, 2003, 91(9): 098101- 098114. doi: 10.1103/PhysRevLett.91.098101
    [23]
    Sirenko M, Stroscio M, Kim K W. Elastic vibrations of microtubules in a fluid[J]. Phys Rev E, 1996, 53 (1): 1003-1010. doi: 10.1103/PhysRevE.53.1003
    [24]
    Flugge W. Stresses in Shells[M]. Berlin: Springer-Verlag, 1960.
    [25]
    Ofek G, Natoli R M, Athanasiou K A. In situ mechanical properties of the chondrocyte cytoplasm and nucleus[J]. J Biomech, 2009, 42(7): 873-877. doi: 10.1016/j.jbiomech.2009.01.024
    [26]
    Leipzing N D, Athanasiou K A. Unconfined creep compression of chondrocytes[J]. J Biomech, 2005, 38(1): 77-85. doi: 10.1016/j.jbiomech.2004.03.013
    [27]
    Peng Z H, Yang J M, Si S H, Fang D C, Chen W S, Luo Y H. Effects of metastasis-suppressor gene KAI1 on viscoelastic properties of hepatocellular carcinoma MHCC97-H cells with high metastatic potential[J]. World Chin J Digestol, 2004, 12(5): 1040.
    [28]
    Chajes A. Principles of Structural Stability Theory[M]. Englewood Cliffs NJ: Prentice-Hall, 1974.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1475) PDF downloads(641) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return