SU Xiao-hong, ZHENG Lian-cun. Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002
Citation: SU Xiao-hong, ZHENG Lian-cun. Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002

Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall

doi: 10.3879/j.issn.1000-0887.2011.04.002
  • Received Date: 2010-06-24
  • Rev Recd Date: 2011-02-14
  • Publish Date: 2011-04-15
  • The magnetohy drodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field was examined.The approximate solutions and skin friction coefficients of the MHD boundary layer flow were obtained by using DTM-Padéwhich couples the differential transform method (DTM) with the Padéapproximation.The approximate solutions were expressed in the form of a power series that can be easily computed by employing an iterative procedure.The results of the approximate solution were tabulated,plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique.It is found that results of the approximate solution agree very well with those of numerical solution,which verifies the reliability and validity of the present work.Moreover,the effects of various physical parameters on the boundary layer flow were presented graphically and discussed.
  • loading
  • [1]
    Sutton G W, Sherman A. Engineering Magnetohydrodynamics[M]. New York: McGraw-Hill, 1965.
    [2]
    Hayat T, Javedb T, Sajid M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface[J]. Physics Letters A, 2008, 372(18): 3264-3273. doi: 10.1016/j.physleta.2008.01.069
    [3]
    朱婧, 郑连存, 郑志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动. 应用数学和力学, 2010, 31(4): 411-419. (ZHU Jing, ZHENG Lian-cun, ZHENG Zhi-gang. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 439-448.)
    [4]
    Abel M S, Nandeppanavar M M. Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2120-2131. doi: 10.1016/j.cnsns.2008.06.004
    [5]
    Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 109-118. doi: 10.1016/j.cnsns.2007.07.011
    [6]
    Prasad K V, Pal D, Datti P S. MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2178-2189. doi: 10.1016/j.cnsns.2008.06.021
    [7]
    Soundalgekar V M, Takhar H S, Singh M. Velocity and temperature field in MHD Falkner-Skan flow[J]. Journal of the Physical Society of Japan, 1981, 50(9): 3139-3143. doi: 10.1143/JPSJ.50.3139
    [8]
    Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by Hankel-Padé method[J]. Physics Letters A, 2009, 373(7): 731-734. doi: 10.1016/j.physleta.2008.12.045
    [9]
    Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. Commun Nonlinear Sci Numer Simulat, 2009, 14(9/10): 3591-3598. doi: 10.1016/j.cnsns.2009.01.030
    [10]
    Parand K, Rezaei A R, Ghaderi S M. An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(1): 274-283. doi: 10.1016/j.cnsns.2010.03.022
    [11]
    Robert A V G, Vajravelu K. Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow[J]. Commun Nonlinear Sci Numer Simulat, 2010, 15(9): 2272-2277. doi: 10.1016/j.cnsns.2009.09.014
    [12]
    赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. (ZHAO Jia-kui. Differential Transformation and Its Applications for Electrical Circuits[M]. Wuhan: Huazhong University Press, 1986.(in Chinese))
    [13]
    Chen C K, Ho S H. Solving partial differential equations by two dimensional differential transform method[J]. Applied Mathematics and Computation, 1999, 106(2): 171-179. doi: 10.1016/S0096-3003(98)10115-7
    [14]
    Ayaz F. Solutions of the systems of differential equations by differential transform method[J]. Applied Mathematics and Computation, 2004, 147(2): 547-567. doi: 10.1016/S0096-3003(02)00794-4
    [15]
    Arikoglu A I. Solution of boundary value problems for integro-differential equations by using differential transform method[J]. Applied Mathematics and Computation, 2005, 168(2): 1145-1158. doi: 10.1016/j.amc.2004.10.009
    [16]
    Liu H, Song Y. Differential transform method applied to high index differential-algebraic equations[J]. Applied Mathematics and Computation, 2007, 184(2): 748-753. doi: 10.1016/j.amc.2006.05.173
    [17]
    Abdel-Halim Hassan I H. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solitons & Fractals, 2008, 36(1): 53-65.
    [18]
    Chang S H, Chang I L. A new algorithm for calculating two-dimensional differential transform of nonlinear functions[J]. Applied Mathematics and Computation, 2009, 215(7): 2486-2494. doi: 10.1016/j.amc.2009.08.046
    [19]
    Boyd J. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain[J]. Computers in Physics, 1997, 11(3): 299-303. doi: 10.1063/1.168606
    [20]
    Rashidi M M. The modified differential transform method for solving MHD boundary-layer equations[J]. Computer Physics Communications, 2009, 180(11): 2210-2217. doi: 10.1016/j.cpc.2009.06.029
    [21]
    Wazwaz A M. The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain[J]. Applied Mathematics and Computation, 2006, 177(2): 737-744. doi: 10.1016/j.amc.2005.09.102
    [22]
    Baker G A. Essentials of Padé Approximants[M]. London: Academic Press, 1975.
    [23]
    Asaithambi N S. A numerical method for the solution of the Falkner-Skan equation[J]. Applied Mathematics and Computation, 1997, 81(2/3): 259-264. doi: 10.1016/S0096-3003(95)00325-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1764) PDF downloads(946) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return