Citation: | MA Hang, GUO Zhao, QIN Qing-hua. Two-Dimensional Polynomial Eigenstrain Formulation of Boundary Integral Equation With Numerical Verification[J]. Applied Mathematics and Mechanics, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002 |
[1] |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of the Royal Society of London A, 1957, 241(1226): 376-396. doi: 10.1098/rspa.1957.0133
|
[2] |
Eshelby J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London A, 1959, 252(1271): 561-569. doi: 10.1098/rspa.1959.0173
|
[3] |
Mura T, Shodja H M, Hirose Y. Inclusion problems (part 3)[J]. Applied Mechanics Review, 1996, 49(10S): S118-S127.
|
[4] |
Federico S, Grilloc A, Herzog W. A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2309-2327. doi: 10.1016/j.jmps.2004.03.010
|
[5] |
Cohen I. Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 2167-2183. doi: 10.1016/j.jmps.2004.02.008
|
[6] |
Franciosi P, Lormand G. Using the radon transform to solve inclusion problems in elasticity[J]. International Journal of Solids and Structures, 2004, 41(3/4): 585-606. doi: 10.1016/j.ijsolstr.2003.10.011
|
[7] |
Feng X Q, Mai Y W, Qin Q H. A micromechanical model for interpenetrating multiphase composites[J]. Computational Material Science, 2003, 28(3/4): 486-493. doi: 10.1016/j.commatsci.2003.06.005
|
[8] |
Kompis V, Kompis M, Kaukic M. Method of continuous dipoles for modeling of materials reinforced by short micro-fibers[J]. Engineering Analysis With Boundary Elements, 2007, 31(5): 416-424. doi: 10.1016/j.enganabound.2006.10.008
|
[9] |
Doghri I, Tinel L. Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(13/16): 1387-1406. doi: 10.1016/j.cma.2005.05.041
|
[10] |
Kakavas P A, Kontoni D N. Numerical investigation of the stress field of particulate reinforced polymeric composites subjected to tension[J]. International Journal for Numerical Methods in Engineering, 2006, 65(7): 1145-1164. doi: 10.1002/nme.1483
|
[11] |
Kanaun S K, Kochekseraii S B. A numerical method for the solution of thermo- and electro-static problems for a medium with isolated inclusions[J]. Journal of Computational Physics, 2003, 192(2): 471-493. doi: 10.1016/j.jcp.2003.07.010
|
[12] |
Lee J, Choi S, Mal A. Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique[J]. International Journal of Solids and Structures, 2001, 38(16): 2789-2802. doi: 10.1016/S0020-7683(00)00182-7
|
[13] |
Dong C Y, Cheung Y K, Lo S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(31): 3411-3421. doi: 10.1016/S0045-7825(02)00261-X
|
[14] |
Dong C Y, Lee K Y. Boundary element analysis of infinite anisotropic elastic medium containing inclusions and cracks[J]. Engineering Analysis With Boundary Elements, 2005, 29(6): 562-569. doi: 10.1016/j.enganabound.2004.12.011
|
[15] |
Dong C Y, Lee K Y. Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J]. International Journal of Solids and Structures, 2006, 43(25/26): 7919-7938. doi: 10.1016/j.ijsolstr.2006.04.009
|
[16] |
Liu Y J, Nishimura N, Tanahashi T, Chen X L, Munakata H. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J]. ASME Journal of Applied Mechanics, 2005, 72(1): 115-128. doi: 10.1115/1.1825436
|
[17] |
Ma H, Deng H L. Nondestructive determination of welding residual stresses by boundary element method[J]. Advances in Engineering Software, 1998, 29(2): 89-95. doi: 10.1016/S0965-9978(98)00051-9
|
[18] |
Nakasone Y, Nishiyama H, Nojiri T. Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes[J]. Materials Science and Engineering A, 2000, 285(1/2): 229-238. doi: 10.1016/S0921-5093(00)00637-7
|
[19] |
Qin Q H. Nonlinear analysis of Reissner plates on an elastic foundation by the BEM[J]. International Journal of Solids and Structures, 1993, 30(22): 3101-3111. doi: 10.1016/0020-7683(93)90141-S
|
[20] |
Greengard L F, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1997, 73(2): 325-348.
|
[21] |
Ma H, Yan C, Qin Q H. Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites[J]. Engineering Analysis with Boundary Elements, 2009, 33(3): 410-419. doi: 10.1016/j.enganabound.2008.06.002
|
[22] |
马杭,夏利伟,秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 29(6): 687-695.(MA Hang, XIA Li-wei, QIN Qing-hua. Computational model for short-fiber composites with eigen-strain formulation of boundary integral equations[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(6): 757-767.) doi: 10.1007/s10483-008-0607-4
|
[23] |
Rahman M. The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain[J]. ASME Journal of Applied Mechanics, 2002, 69(5): 593-601. doi: 10.1115/1.1491270
|
[24] |
Nie G H, Guo L, Chan C K, Shin F G. Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots[J]. International Journal of Solids and Structures, 2007, 44(10): 3575-3593. doi: 10.1016/j.ijsolstr.2006.10.005
|
[25] |
Ma H, Kamiya N, Xu S Q. Complete polynomial expansion of domain variables at boundary for two-dimensional elasto-plastic problems[J]. Engineering Analysis With Boundary Elements, 1998, 21(3): 271-275. doi: 10.1016/S0955-7997(98)00017-4
|
[26] |
Ma H, Qin Q H. Solving potential problems by a boundary-type meshless method—the boundary point method based on BIE[J]. Engineering Analysis With Boundary Elements, 2007, 31(9): 749-761. doi: 10.1016/j.enganabound.2007.03.001
|
[27] |
Ma H, Zhou J, Qin Q H. Boundary point method for linear elasticity using constant and quadratic moving elements[J]. Advances in Engineering Software, 2010, 41(3): 480-488. doi: 10.1016/j.advengsoft.2009.10.006
|