K. Ramakrishnan, K. Shailendhra. Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003
Citation: K. Ramakrishnan, K. Shailendhra. Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 785-794. doi: 10.3879/j.issn.1000-0887.2011.07.003

Hydromagnetic Flow Through a Uniform Channel Bounded by Porous Media

doi: 10.3879/j.issn.1000-0887.2011.07.003
  • Received Date: 2010-05-10
  • Rev Recd Date: 1900-01-11
  • Publish Date: 2011-07-15
  • The combined effects of magnetic field, permeable walls, Darcy velocity and slipparameter on the steady flow of a fluid in a channel of uniform width were studied. The fluid flowing in the channel was assumed to be homogeneous, incom pressible and Newtonian. Analytical so lutions were constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability, Darcy velocity and slipparameter on the axial velocity, slipvelocity and shear stress were discussed in detail. It is seen that the Hartmann number, Darcyvelocity, porous parameter and slipparameter play avital role in altering the flow and in turn the shear stress.
  • loading
  • [1]
    Makinde O D. Magneto-hydrodynamic stability of plane-Poiseuille flow using multideck asymptotic techniqe[J]. Mathematical and Computer Modelling, 2003, 37(3): 251-259. doi: 10.1016/S0895-7177(03)00004-9
    [2]
    Rao A R, Deshikachar K S. MHD oscillatory flow of blood through channels of variable cross section[J]. Int J Engng Sci, 1986, 24(10): 1615-1628. doi: 10.1016/0020-7225(86)90136-9
    [3]
    Berman A S. Laminar flow in channels with porous walls[J]. J Appl Phys, 1953, 24(9): 1232-1235. doi: 10.1063/1.1721476
    [4]
    Sellars J R. Laminar flow in channels with porous walls at high suction Reynolds numbers[J]. J Appl Phys, 1955, 26(4): 489-490.
    [5]
    Yuan S W. Further investigations of laminar flow in channels with porous walls[J]. J Appl Phys, 1956, 27(3): 267-269. doi: 10.1063/1.1722355
    [6]
    Wallace W E, Pierce C I, Swayer W K. Experiments on the flow of mercury in porous media in a transverse magnetic field[R]. TN23, U7, No.7259. Washington DC: US Bureau of Mines, 1969.
    [7]
    Rudraiah N, Ramaiah B K, Rajasekhar B M. Hartmann flow over a permeable bed[J]. Int J Engg Sci, 1975, 13(1): 1-24. doi: 10.1016/0020-7225(75)90070-1
    [8]
    Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall[J]. J Fluid Mech, 1967, 30(1): 197-207. doi: 10.1017/S0022112067001375
    [9]
    Richardson S. A model for the boundary condition of a porous material —part 2 [J]. J Fluid Mech, 1971, 49(2): 327-336. doi: 10.1017/S002211207100209X
    [10]
    Rajasekhar B M. Experimental and theoretical study of flow of fluids past porous media[D]. PhD Thesis. Banglore Univ, 1974.
    [11]
    Rudraiah N, Veerbhadraiah R. Temperature distribution in Couette flow past a permeable bed[J]. Proc Mathematical Sciences, 1977, 86(6): 537-547.
    [12]
    Darcy H. Les Fountains Publique De La Ville De Dijon[M]. Delmont, Paris, 1856.
    [13]
    Van Lankveld M A M. Validation of boundary conditions between a porous medium and a viscous fluid[R]. Report No. WFW 91.071. Eindhoven University of Technology, August, 1991.
    [14]
    Srivastava A C. Bull[J]. Gauhati University Mathematics Association, 1996, 3:1.
    [15]
    Singh R, Lawrence L. Influence of slip velocity at a membrane surface on ultra-filtration performance—II: tube flow system[J]. Int J Heat and Mass Transfer, 1979, 22(5): 731-737. doi: 10.1016/0017-9310(79)90120-0
    [16]
    Pal D, Veerabhadraiah R, Shivakumar P N, Rudraiah N. Longitudinal dispersion of tracer particles in a channel bounded by porous media using slip condition[J]. Int J Math Math Sci, 1984, 7(4): 755-764. doi: 10.1155/S0161171284000788
    [17]
    Khan M, Hayat T, Wang Y. Slip effects on shearing flows in a porous medium[J]. Acta Mechanica Sinica, 2008, 24(1): 51-59. doi: 10.1007/s10409-007-0123-0
    [18]
    Makinde O D, Osalusi E. MHD flow in a channel with slip at the permeable boundaries[J]. Rom J Phys, 2006, 51(3): 319-328.
    [19]
    Ganesh S, Krishnambal S. Magnetohydrodynamic flow of viscous fluid between two parallel porous plates[J]. J Appl Sci, 2006, 6(11): 2420-2425. doi: 10.3923/jas.2006.2420.2425
    [20]
    Chandrasekhara B D, Rudraiah N. MHD flow through a channel of varying gap[J]. Indian J Pure and Appl Math, 1980, 11(8): 1105-1123.
    [21]
    Shivakumar P N, Nagaraj S, Veerabhadraiah R, Rudraiah N. Fluid movement in a channel of varying gap with permeable walls covered by porous media[J]. Int J Engng Sci, 1986, 24(4): 479-492. doi: 10.1016/0020-7225(86)90040-6
    [22]
    Sparrow E M, Cess R D. Magnetohydrodynamic flow and heat transfer about a rotating disc[J]. J Appl Mech, 1962, 29: 181-187. doi: 10.1115/1.3636454
    [23]
    Roberts P H. An Introduction to Magnetohydrodynamics[M]. London: Longmans Publications, 1967.
    [24]
    Langlois W F. Creeping viscous flow through a two dimensional channel[J]. Proc Third U S Nat Cong Appl Mech, 1958: 777-783.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1888) PDF downloads(786) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return