WANG Guang-min, WANG Xian-jia, WAN Zhong-ping, JIA Shi-hui. Adaptive Genetic Algorithm for Solving Bilevel Linear Programming Problem[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1433-1440.
Citation: WANG Guang-min, WANG Xian-jia, WAN Zhong-ping, JIA Shi-hui. Adaptive Genetic Algorithm for Solving Bilevel Linear Programming Problem[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1433-1440.

Adaptive Genetic Algorithm for Solving Bilevel Linear Programming Problem

  • Received Date: 2005-11-30
  • Rev Recd Date: 2007-10-31
  • Publish Date: 2007-12-15
  • An adaptive genetic algorithm is proposed for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes may be infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.
  • loading
  • [1]
    Wen U P,Hsu S T.Linear bilevel programming problem—a review[J].Journal of the Operational Research Society,1991,42(2):125-133.
    [2]
    Bard J F. Some properties of the bilevel linear programming[J].Journal of Optimization Theory and Applications,1991,68(2):146-164.
    [3]
    Ben-Ayed O, Blair C. Computational difficulties of bilevel linear programming[J].Operations Research,1990,38(3):556-560. doi: 10.1287/opre.38.3.556
    [4]
    Ben-Ayed O. Bilevel linear programming[J].Comuters and Operations Research,1993,20(5):485-501. doi: 10.1016/0305-0548(93)90013-9
    [5]
    Vicente L N, Calamai P H. Bilevel and multibilevel programming: a bibliography review[J].Journal of Global Optimization,1994,5(3):291-306. doi: 10.1007/BF01096458
    [6]
    Dempe S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[J].Optimization,2003,52(3):333-359. doi: 10.1080/0233193031000149894
    [7]
    Colson B, Marcotte P, Savard G. An overview of bilevel optimization[J].Annals of Operations Research,2007,153(1):235-256. doi: 10.1007/s10479-007-0176-2
    [8]
    王广民,万仲平,王先甲.二(双)层规划综述[J].数学进展,2007,36(5):513-529.
    [9]
    Shih H S, Wen U P, Lee E S,et al.A neural network approach to multiobjective and multilevel programming problems[J].Computers and Mathematics With Applications,2004,48(1/2):95-108. doi: 10.1016/j.camwa.2003.12.003
    [10]
    Mathieu R, Pittard L, Anandalingam G. Genetic algorithm based approach to bilevel linear programming[J].RAIRO-Operations Research,1994,28(1):1-21.
    [11]
    YIN Ya-feng.Genetic algorithms based approach for bilevel programming models[J].Journal of Transportation Engineering,2000,126(2):115-120. doi: 10.1061/(ASCE)0733-947X(2000)126:2(115)
    [12]
    Hejazi S R, Memariani A, Jahanshanloo G,et al.Linear bilevel programming solution by genetic algorithm[J].Computers & Operations Research,2002,29(13):1913-1925.
    [13]
    Oduguwa V, Roy R. Bilevel optimisation using genetic algorithm[A].In:Proceedings of the 2000 IEEE International Conference on Artificial Intelligence Systems[C].Washington,DC:IEEE Computer Society,2002, 322-327.
    [14]
    WANG Guang-min,WANG Xian-jia,WAN Zhong-ping,et al.Genetic algorithms for solving linear bilevel programming[A].In:Hong Shen,Koji Nakano,Eds.The 6th International Conference on Parallel and Distributed Computing,Applications and Technologies[C].Washington,DC:IEEE Computer Society,2005, 920-924.
    [15]
    Calvete H I, Galé C, Mateo P M.A new approach for solving linear bilevel problems using genetic algorithms[J].European Journal of Operational Research,2007.DOI: 10.1016/j.ejor.2007.03.034.
    [16]
    Goldberg D E.Genetic Algorithms in Search, Optimization and Machine Learning[M].Massachusetts: Addison Wesley, 1989.
    [17]
    Michalewicz Z.Genetic Algorithms +Data Structures = Evolution Programs[M].Berlin:Springer-Verlag, 1992.
    [18]
    Michalewicz Z, Janikow C. A modified genetic algorithm for optimal control problems[J].Computers and Mathematics With Applications,1992,23(12):83-94. doi: 10.1016/0898-1221(92)90094-X
    [19]
    Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Transaction on Systems, Man and Cybernetics,1994,24(4):656-667. doi: 10.1109/21.286385
    [20]
    Bard J F. An efficient point algorithm for a linear two-stage optimization problem[J].Operations Research,1983,31(4):670-684. doi: 10.1287/opre.31.4.670
    [21]
    Anandalingam G, White D J. A solution for the linear static stackelberg problem using penalty functions[J].IEEE Transaction on Automatic Control,1990,35(10):1170-1173. doi: 10.1109/9.58565
    [22]
    Wen U P, Hsu S T. Efficient solutions for the linear bilevel programming problem[J].European Journal of Operational Research,1992,62(3):354-362. doi: 10.1016/0377-2217(92)90124-R
    [23]
    Bard J F, Falk J E. An explicit solution to the multi-level programming problem[J].Computers & Operations Research,1982,9(1):77-100.
    [24]
    Candler W, Townsley R. A linear two-level programming problem[J].Computers and Operations Research,1982,9(1):59-76. doi: 10.1016/0305-0548(82)90006-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2906) PDF downloads(603) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return