Citation: | LI Min, YUAN Xiao-ming. Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1483-1492. |
[1] |
Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems[J].Mathematical Programming,1994,64(1):81-101. doi: 10.1007/BF01582566
|
[2] |
Bertsekas D P, Gafni E M. Projection method for variational inequalities with applications to the traffic assignment problem[J].Mathematical Programming Study,1982,17:139-159. doi: 10.1007/BFb0120965
|
[3] |
Dafermos S. Traffic equilibrium and variational inequalities[J].Transportation Science,1980,14(1):42-54. doi: 10.1287/trsc.14.1.42
|
[4] |
Eckstein J, Fukushima M.Some reformulation and applications of the alternating directions method of multipliers[A].In:Hager W W, Hearn D W, Pardalos P M,Eds.Large Scale Optimization: State of the Art[C].Amsterdam, Holland:Kluwer Academic Publishers,1994, 115-134.
|
[5] |
Fukushima M. Application of the alternating directions method of multipliers to separable convex programming problems[J].Computational Optimization and Applications,1992,1(1):93-111. doi: 10.1007/BF00247655
|
[6] |
Nagurney A, Ramanujam P.Transportation network policy modeling with goal targets and generalized penalty functions[J].Transportation Science,1996,30(1):3-13. doi: 10.1287/trsc.30.1.3
|
[7] |
Glowinski R, Tallec P L.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[M].SIAM Studies in Applied Mathematics.Philadelphia, PA:SIAM,1989.
|
[8] |
Rockafellar R T.Convex Analysis[M].Princeton, NJ:Princeton University Press,1970.
|
[9] |
Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J].Computers and Mathematics With Applications,1976,2(1):17-40. doi: 10.1016/0898-1221(76)90003-1
|
[10] |
He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities[J].Journal of Optimization Theory and Applications,2000,106(2):337-356. doi: 10.1023/A:1004603514434
|
[11] |
He B S, Liao L-Z, Han D R,et al.A new inexact alternating directions method for monotone variational inequalities[J].Mathematical Programming,2002,92(1):103-118. doi: 10.1007/s101070100280
|
[12] |
Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J].SIAM Journal on Control and Optimization,1991,29(1):119-138. doi: 10.1137/0329006
|
[13] |
Tseng P. Alternating projection-proximal methods for convex programming and variational inequalities[J].SIAM Journal on Optimization,1997,7(4):951-965. doi: 10.1137/S1052623495279797
|
[14] |
He B S, Liao L-Z,Yang Z H. A new approximate proximal point algorithm for maximal monotone operator[J].Science in China,Ser A,2003,46(2):200-206. doi: 10.1360/03ys9021
|
[15] |
Kyono M, Fukushima M. Nonlinear proximal decomposition method for convex programming[J].Journal of Optimization Theory and Applications,2000,106(2): 357-372. doi: 10.1023/A:1004655531273
|
[16] |
Auslender A, Teboulle M. Entropic proximal decomposition methods for convex programs and variational inequalities[J].Mathematical Programming,2001,91(1):33-47.
|
[17] |
Kontogiorgis S,Meyer R R. A variable-penalty alternating directions method for convex optimization[J].Mathematical Programming,1998,83(1):29-53.
|
[18] |
Solodov M V, Svaiter B F. A unified framework for some inexact proximal point algorithms[J].Numerical Functional Analysis and Optimization,2001,22(7/8):1013-1035. doi: 10.1081/NFA-100108320
|