LI Min, YUAN Xiao-ming. Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1483-1492.
Citation: LI Min, YUAN Xiao-ming. Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1483-1492.

Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities

  • Received Date: 2006-05-22
  • Rev Recd Date: 2007-09-14
  • Publish Date: 2007-12-15
  • The proximal-based decomposition method was originally proposed by Chen and Teboulle (Math. Programming, 1994, 64(1):81-101) for solving convex minimization problems. This paper extended to solve monotone variational inequalities associated with separable structures with the improvements that the restrictive assumptions on the involved parameters are much relaxed, and thus makes it practical to solve the involved subproblems easily. Without additional assumptions, global convergence of the new method is proved under the same mild assumptions on the problem's data as the original method.
  • loading
  • [1]
    Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems[J].Mathematical Programming,1994,64(1):81-101. doi: 10.1007/BF01582566
    [2]
    Bertsekas D P, Gafni E M. Projection method for variational inequalities with applications to the traffic assignment problem[J].Mathematical Programming Study,1982,17:139-159. doi: 10.1007/BFb0120965
    [3]
    Dafermos S. Traffic equilibrium and variational inequalities[J].Transportation Science,1980,14(1):42-54. doi: 10.1287/trsc.14.1.42
    [4]
    Eckstein J, Fukushima M.Some reformulation and applications of the alternating directions method of multipliers[A].In:Hager W W, Hearn D W, Pardalos P M,Eds.Large Scale Optimization: State of the Art[C].Amsterdam, Holland:Kluwer Academic Publishers,1994, 115-134.
    [5]
    Fukushima M. Application of the alternating directions method of multipliers to separable convex programming problems[J].Computational Optimization and Applications,1992,1(1):93-111. doi: 10.1007/BF00247655
    [6]
    Nagurney A, Ramanujam P.Transportation network policy modeling with goal targets and generalized penalty functions[J].Transportation Science,1996,30(1):3-13. doi: 10.1287/trsc.30.1.3
    [7]
    Glowinski R, Tallec P L.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[M].SIAM Studies in Applied Mathematics.Philadelphia, PA:SIAM,1989.
    [8]
    Rockafellar R T.Convex Analysis[M].Princeton, NJ:Princeton University Press,1970.
    [9]
    Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J].Computers and Mathematics With Applications,1976,2(1):17-40. doi: 10.1016/0898-1221(76)90003-1
    [10]
    He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities[J].Journal of Optimization Theory and Applications,2000,106(2):337-356. doi: 10.1023/A:1004603514434
    [11]
    He B S, Liao L-Z, Han D R,et al.A new inexact alternating directions method for monotone variational inequalities[J].Mathematical Programming,2002,92(1):103-118. doi: 10.1007/s101070100280
    [12]
    Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J].SIAM Journal on Control and Optimization,1991,29(1):119-138. doi: 10.1137/0329006
    [13]
    Tseng P. Alternating projection-proximal methods for convex programming and variational inequalities[J].SIAM Journal on Optimization,1997,7(4):951-965. doi: 10.1137/S1052623495279797
    [14]
    He B S, Liao L-Z,Yang Z H. A new approximate proximal point algorithm for maximal monotone operator[J].Science in China,Ser A,2003,46(2):200-206. doi: 10.1360/03ys9021
    [15]
    Kyono M, Fukushima M. Nonlinear proximal decomposition method for convex programming[J].Journal of Optimization Theory and Applications,2000,106(2): 357-372. doi: 10.1023/A:1004655531273
    [16]
    Auslender A, Teboulle M. Entropic proximal decomposition methods for convex programs and variational inequalities[J].Mathematical Programming,2001,91(1):33-47.
    [17]
    Kontogiorgis S,Meyer R R. A variable-penalty alternating directions method for convex optimization[J].Mathematical Programming,1998,83(1):29-53.
    [18]
    Solodov M V, Svaiter B F. A unified framework for some inexact proximal point algorithms[J].Numerical Functional Analysis and Optimization,2001,22(7/8):1013-1035. doi: 10.1081/NFA-100108320
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2721) PDF downloads(628) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return