Citation: | MENG Xin-zhu, ZHAO Qiu-lan, CHEN Lan-sun. Global Qualitative Analysis of a New Monod Type Chemostat Model With Delayed Growth Response and Pulsed Input in a Polluted Environment[J]. Applied Mathematics and Mechanics, 2008, 29(1): 69-80. |
[1] |
Hsu S B.A competition model for a seasonally fluctuating nutrient[J].Journal of Mathematical Biology,1980,9(2):115-132. doi: 10.1007/BF00275917
|
[2] |
Smith H L.Competitive coexistence in an oscillating chemostat[J].SIAM Journal on Applied Mathematics,1981,40(3):498-522. doi: 10.1137/0140042
|
[3] |
Butler G J, Hsu S B,Waltman P.A mathematical model of the chemostat with periodic washout rate[J].SIAM Journal on Applied Mathematics,1985,45(3):435-449. doi: 10.1137/0145025
|
[4] |
Pilyugin S S, Waltman P.Competition in the unstirred chemostat with periodic input and washout[J].SIAM Journal on Applied Mathematics,1999,59(4):1157-1177. doi: 10.1137/S0036139997323954
|
[5] |
Simth H L,Waltman P.The Theory of the Chemostat[M].Cambridge: Cambridge University Press,1995.
|
[6] |
Hsu S B,Hubbell S P,Waltman P.A mathematical theory for single nutrient competition in continuous cultures of micro-organisms[J].SIAM Journal on Applied Mathematics,1977,32(2):366-382. doi: 10.1137/0132030
|
[7] |
Picket A M.Growth in a changing environment[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press,1982.
|
[8] |
Monod J.La technique de culture continue; théorie et applications[J].Ann Inst Pasteur,1950,79(19):390-401.
|
[9] |
Hansen S R,Hubbell S P.Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[J].Science,1980,207(4438):1491-1493. doi: 10.1126/science.6767274
|
[10] |
Barford J P,Pamment N B,Hall R J.Lag phases and transients[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press, 1982.
|
[11] |
Ramkrishna D,Fredrickson A G, Tsuchiya H M. Dynamics of microbial propagation: models considering inhibitors and variable cell composition[J].Biotechnology and Bioengineering,1967,9(2):129-170. doi: 10.1002/bit.260090203
|
[12] |
Bush A W,Cook A E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater[J].Journal of Theoretical Biology,1976,63(2):385-395. doi: 10.1016/0022-5193(76)90041-2
|
[13] |
Caperon J.Time lag in population growth response of isochrysis galbana to a variable nitrate environment[J].Ecology,1969,50(2):188-192. doi: 10.2307/1934845
|
[14] |
Freedman H I,So J W-H,Waltman P.Coexistence in a model of competition in the chemostat incorporating discrete delays[J].SIAM Journal on Applied Mathematics,1989,49(3):859-870. doi: 10.1137/0149050
|
[15] |
Freedman H I,So J W-H, Waltman P.Chemostat competition with time delays[A].In:Eisenfeld J,Levine D S,Eds.Biomedical Modelling and Simulation[C].New York:Scientific Publishing Co. 1989.
|
[16] |
RUAN Shi-gui,Wolkowicz Gail S K.Bifurcation analysis of a chemostat model with a distributed delay[J].Journal of Mathematical Analysis and Applications,1996,204(3):786-812. doi: 10.1006/jmaa.1996.0468
|
[17] |
Thingstad T F,Langeland T I.Dynamics of chemostat culture: the effect of a delay in cell response[J].Journal of Theoretical Biology,1974,48(1):149-159. doi: 10.1016/0022-5193(74)90186-6
|
[18] |
Ellermeyer S F.Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth[J].SIAM Journal on Applied Mathematics,1994,54(2):456-465. doi: 10.1137/S003613999222522X
|
[19] |
Wolkowicz Gail S K,XIA H.Global asymptotic behavior of a chemostat model with discrete delays[J].SIAM Journal on Applied Mathematics,1997,57(4):1019-1043. doi: 10.1137/S0036139995287314
|
[20] |
Wolkowicz Gail S K, XIA Hua-xing,RUAN Shi-gui.Competition in the chemostat: A distributed delay model and its global asymptotic behavior[J].SIAM Journal on Applied Mathematics,1997,57(5):1281-1310. doi: 10.1137/S0036139995289842
|
[21] |
XIA Hua-xing,Wolkowicz Gail S K,WANG Lin.Transient oscillations induced by delayed growth response in the chemostat[J].Journal of Mathematical Biology,2005,50(5):489-530. doi: 10.1007/s00285-004-0311-5
|
[22] |
ZHAO Tao.Global periodic solutions for a differential delay system modelling a microbial population in the chemostat[J].Journal of Mathematical Analysis and Applications,1995,193(1):329-352. doi: 10.1006/jmaa.1995.1239
|
[23] |
MacDonald N. Time delays in chemostat models[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press,1982.
|
[24] |
Hale J KM,Somolinas A S.Competition for fluctuating nutrient[J].Journal of Mathematical Biology,1983,18(3):255-280. doi: 10.1007/BF00276091
|
[25] |
Buler G J, Hsu S B,Waltman P. A mathematical model of the chemostat with periodic washout rate[J].SIAM Journal on Applied Mathematics,1985,45(3):435-449. doi: 10.1137/0145025
|
[26] |
Wolkowicz Gail S K,ZHAO Xiao-qiang.N-spicies competition in a periodic chemostat[J].Differential and Integral Equations: An International Journal for Theory and Applications,1998,11(3):465-491.
|
[27] |
Funasaki E,Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat[J].Theoretical Population Biology,1993,44(2):203-224. doi: 10.1006/tpbi.1993.1026
|
[28] |
Smith R J, Wolkowicz Gail S K. Analysis of a model of the nutrient driven self-cycling fermentation process[J].Dynamics of Continuous, Discrete and Impulsive Systems,Series B,2004,11(2):239-265.
|
[29] |
SUN Shu-lin,CHEN Lan-sun.Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration[J].Journal of Mathematical Chemistry,2007,42(4):837-848. doi: 10.1007/s10910-006-9144-3
|
[30] |
Bainov D,Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications[M].Harlow:Longman Scientific and Technical Press,1993.
|
[31] |
Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore: World Scientific,1989.
|
[32] |
LIU Xian-ning,CHEN Lan-sun.Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-preysystem with impulsive perturbations on the predator[J].Chaos,Solitons and Fractals,2003,16(2):311-320. doi: 10.1016/S0960-0779(02)00408-3
|
[33] |
Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J].Mathematical Biosciences,1998,149(1):23-36. doi: 10.1016/S0025-5564(97)10016-5
|
[34] |
Ballinger G,Liu X. Permanence of population growth models with impulsive effects[J].Mathematical and Computer Modelling,1997,26(12):59-72.
|
[35] |
SUN Ming-jing,CHEN Lan-sun.Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input[J].Journal of Mathematical Chemistry,2006, DOI: 10.1007/s10910-006-9207-5.
|
[36] |
陈兰荪,陈健.非线性生物动力系统[M].北京:科学出版社.
|
[37] |
Kuang Yang.Delay Differential Equations With Applications in Population Dynamics[M].San Diego, CA: Academic Press,Inc.1993.
|