YI Fa-huai, PENG Xin-ling, CHEN Ying-shan. Analysis of the Exercise Boundary of an American Interest Rate Option[J]. Applied Mathematics and Mechanics, 2008, 29(3): 369-378.
Citation: YI Fa-huai, PENG Xin-ling, CHEN Ying-shan. Analysis of the Exercise Boundary of an American Interest Rate Option[J]. Applied Mathematics and Mechanics, 2008, 29(3): 369-378.

Analysis of the Exercise Boundary of an American Interest Rate Option

  • Received Date: 2007-09-11
  • Rev Recd Date: 2008-01-21
  • Publish Date: 2008-03-15
  • By applying the variational inequality technique, the behavior of the exercise boundary of the american-style interest rate option is analyzed under the assumption that the interest rates obey a mean-reverting random walk as given by the Vasicek model. The monotonicity, boundedness and C-smoothness of the exercise boundary are proved.
  • loading
  • [1]
    JIANG Li-shang.Well-posedness for a free boundary problem of a nonlinear parabolic equation[J].Acta Math Sinica,1962,12(3):369-388.
    [2]
    JIANG Li-shang.Existence and differentiability of the solution of a two-phase Stefan problem for quasi-linear parabolic equations[J].Acta Math Sinica,1965,15(6):749-764.
    [3]
    Wilmott P.Derivatives, The Theory and Practice of Financial Engineering[M].West Sussex,England:John Wiley & Sons Ltd,1998.
    [4]
    Vasicek O A.An equilibrium characterization of the term structure[J].Financial Economics,1977,5(2):177-188. doi: 10.1016/0304-405X(77)90016-2
    [5]
    Alobaidi G, Mallier R.Interest rate options close to erpiry[J].SUT Journal of Mathematics,2004,40(1):13-40.
    [6]
    Samuelson P A.Rational theory of warrant pricing[J].Industrial Management Review,1965,6(1):13-31.
    [7]
    JIANG Li-shang,BIAN Bao-jun,YI Fa-huai.A parabolic variational inequality arising from valuation of fixed rate mortgages}[J].European J Appl Math,2005,16(3):361-383. doi: 10.1017/S0956792505006297
    [8]
    Cannon J R.The One-Dimensional Hear Equation[M].Menlo Park,California:Addison-Wesley Publishing Company, Inc, 1984.
    [9]
    Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N.Linear and Quasi-linear Equations of Parabolic Type[M].Providence,Rhode Island:American Mathematical Society,1968.
    [10]
    Friedman A.Variational Principle and Free boundary Problems[M].New York:John Wiley & Sons,1982.
    [11]
    Gilbarg D, Trudinger N.S.Elliptic Partial Differential Equations of Second Order[M].Berlin:Springer-Verlag, 1983.
    [12]
    Friedman A.Parabolic variational inequalities in one space dimension and smoothness of the free boundary[J].Journal of Functional Analysis,1975,18(2):151-176. doi: 10.1016/0022-1236(75)90022-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2760) PDF downloads(603) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return