Citation: | LU Tie-jun, WANG Mei-juan, LIU Yan. Global Stability Analysis of a Ratio-Dependent Predator-Prey System[J]. Applied Mathematics and Mechanics, 2008, 29(4): 447-452. |
[1] |
Berezovskaya F,Karev G,Arditi R.Parametric analysis of the ratio-dependent predator-prey model[J].J Math Biol,2001,43(3):221-246. doi: 10.1007/s002850000078
|
[2] |
XIAO Dong-mei,RUAN Shi-gui.Global dynamics of a ratio-dependent predator-prey system[J].J Math Biol,2001,43(3):268-290. doi: 10.1007/s002850100097
|
[3] |
Kuang Y,Beretta E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J Math Biol,1998,36(4):389-406. doi: 10.1007/s002850050105
|
[4] |
Hsu S-B,Hwang T-W,Kuang Y.Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system[J].J Math Biol,2001,43(4):221-246. doi: 10.1007/s002850000078
|
[5] |
王琳琳.自治Holling(Ⅲ)类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6.
|
[6] |
鲁铁军,王美娟,刘妍.一类基于比率的捕食-食饵系统的参数分析[J].数学的实践与认识,2007,37(17):98-104.
|
[7] |
Perko L.Differential Equations and Dynamical Systems[M].2nd Ed.Texts in Applied Mathematics 7.Moscow:Springer-Verlag,1996,344.
|
[8] |
Guckenheimer J, Holmes P.Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1980.
|