ZHANG Shi-sheng, LEE Joseph H W, CHAN Chi Kin. Algorithms of Common Solutions for Quasi Variational Inclusion and Fixed Point Problems[J]. Applied Mathematics and Mechanics, 2008, 29(5): 515-524.
Citation: ZHANG Shi-sheng, LEE Joseph H W, CHAN Chi Kin. Algorithms of Common Solutions for Quasi Variational Inclusion and Fixed Point Problems[J]. Applied Mathematics and Mechanics, 2008, 29(5): 515-524.

Algorithms of Common Solutions for Quasi Variational Inclusion and Fixed Point Problems

  • Received Date: 2007-08-30
  • Rev Recd Date: 2008-03-19
  • Publish Date: 2008-05-15
  • The purpose is to present an iterative scheme for finding a common element of the set of solutions of the variational inclusion problem with multi-valued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions,some strong convergence theorems for approximating to this common elements were proved.The results presented not only improve and extend the main results in Korpelevich[Ekonomika i Matematicheskie Metody,1976,12(4):747-756],but also extend and replenish the corresponding results in Iiduka and Takahashi[Nonlinear Anal,TMA,2005,61(3):341-350], Takahashi and Toyoda[J Optim Theory Appl,2003,118(2):417-428],Nadezhkina and Takahashi[J Optim Theory Appl,2006,128(1):191-201]and Zeng and Yao[Taiwanese Journal of Mathematics, 2006,10(5):1293-1303].
  • loading
  • [1]
    Noor M A,Ames K W I F.Sensitivity analysis for quasi variational inclusions[J].J Math Anal Appl,1999,236(2):290-299. doi: 10.1006/jmaa.1999.6424
    [2]
    Chang S S.Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,248:438-454. doi: 10.1006/jmaa.2000.6919
    [3]
    Chang S S.Existence and approximation of solutions of set-valued variational inclusions in Banach spaces[J].Nonlinear Anal,TMA,2001,47(1):583-594. doi: 10.1016/S0362-546X(01)00203-6
    [4]
    Demyanov V F,Stavroulakis G E,Polyakova L N,et al.Quasidifferentiability and Nonsmooth Modeling in Mechanics,Engineering and Economics[M].Dordrecht:Kluwer Academic,1996.
    [5]
    Noor M A.Generalized set-valued variational inclusions and resulvent equations[J].J Math Anal Appl,1998,228(1):206-220. doi: 10.1006/jmaa.1998.6127
    [6]
    Browder F E.Nonlinear monotone operators and convex sets in Banach spaces[J].Bull Amer Math Soc,1965,71(5):780-785. doi: 10.1090/S0002-9904-1965-11391-X
    [7]
    Hartman P,Stampacchia G.On some nonlinear elliptic differential equations[J].Acta Math,1966,115(1):271-310. doi: 10.1007/BF02392210
    [8]
    Lions J L,Stampacchia G.Variational inequalities[J].Comm Pure Appl Math,1967,20:493-517. doi: 10.1002/cpa.3160200302
    [9]
    Browder F E,Petryshyn W V.Construction of fixed points of nonlinear mappings in Hilbert spaces[J].J Math Anal Appl,1967,20:197-228. doi: 10.1016/0022-247X(67)90085-6
    [10]
    Iiduka H,Takahashi W,Toyoda M.Approximation of solutions of variational inequalities for monotone mappings[J].Pan Amer Math J,2004,14:49-61.
    [11]
    Liu F,Nashed M Z.Regularization of nonlinear ill-posed variational inequalities and convergence rates[J].Set-Valued Analysis,1998,6(4):313-344. doi: 10.1023/A:1008643727926
    [12]
    Takahashi W,Toyoda M.Weak convergence theorems for nonexpansive mappings and monotone mappings[J].J Optim Theory Appl,2003,118(2):417-428. doi: 10.1023/A:1025407607560
    [13]
    Iiduka H,Takahashi L W.Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings[J].Nonlinear Anal,TMA,2005,61(3):341-350. doi: 10.1016/j.na.2003.07.023
    [14]
    Korpelevi[KG-*4]. cˇ G M.An extragradient method for finding saddle points and for other problems[J].Ekonomika i Matematicheskie Metody,1976,12(4):747-756.
    [15]
    Nadezhkina N,Takahashi W.Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings[J].J Optim Theory Appl,2006,128(1):191-201. doi: 10.1007/s10957-005-7564-z
    [16]
    Zeng L C,Yao J C.Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems[J].Taiwanese Journal of Mathematics,2006,10(5):1293-1303.
    [17]
    Brezis H.Opérateur Maximaux Monotones et Semiproupes de Contractions Dans les Espaces de Hilbert[M].Amsterdam:North-Holland,1973.
    [18]
    Pascali Dan.Nonlinear Mappings of Monotone Type[M].Amsterdam,Netherlands:Sijthoff and Noordhoff International Publishers,1978.
    [19]
    Liu L S.Ishikawa and Manniterative processes with errors for nonlinear strongly accretive mappings in Banach spaces[J].J Math Anal Appl,1995,194(1):114-125. doi: 10.1006/jmaa.1995.1289
    [20]
    Goebel K,Kirk W A.Topics in metric fixed point theory[A].In:Cambridge Studies in Advanced Mathematics[C].28.London:Cambridge University Press,1990.
    [21]
    Bruck R E.On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert spaces[J].J Math Anal Appl,1977,61:159-164. doi: 10.1016/0022-247X(77)90152-4
    [22]
    Chang S S.Some problems and results in the study of nonlinear analysis[J].Nonlinear Anal,TMA,1997,30(7):4197-4208. doi: 10.1016/S0362-546X(97)00388-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2961) PDF downloads(840) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return