YUAN Si, XING Qin-yan, WANG Xu, YE Kang-sheng. Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method With Optimal Super-Convergence Order[J]. Applied Mathematics and Mechanics, 2008, 29(5): 533-543.
Citation: YUAN Si, XING Qin-yan, WANG Xu, YE Kang-sheng. Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method With Optimal Super-Convergence Order[J]. Applied Mathematics and Mechanics, 2008, 29(5): 533-543.

Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method With Optimal Super-Convergence Order

  • Received Date: 2008-01-22
  • Rev Recd Date: 2008-04-02
  • Publish Date: 2008-05-15
  • Based on the newly-developed element energy projection(EEP)method with optimal super-convergence order for computation of super-convergent results,an improved self-adaptive strategy for one-dimensional finite element method(FEM)was proposed.In the strategy,a posteriori errors were estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence,meshes were refined by using error-averaging method,and quasi -FEM solutions were used to replace true FEM solutions in the adaptive process.This strategy has been found to be simple,clear,efficient and reliable.For most of the problems,only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in max-norm.Taking the elliptical ordinary differential equation of second order as the model problem,the fundamental idea,implementation strategy and computational algorithm were described and representative numerical examples were given to show the effectiveness and reliability of the proposed approach.
  • loading
  • [1]
    Babuska I,Rheinboldt W C.A posteriori error analysis of finite element method for one-dimensional problems[J].SIAM Journal on Numerical Analysis,1981,18(3):565-589. doi: 10.1137/0718036
    [2]
    Zienkiewicz O C,Zhu J Z.The superconvergence patch recovery (SPR) and a posteriori error estimates,Part 1:the recovery technique[J].Internat J Numer Methods Engrg,1992,33(7):1331-1364. doi: 10.1002/nme.1620330702
    [3]
    Zienkiewicz O C,Zhu J Z.The superconvergence patch recovery (SPR) and a posteriori error estimates,Part 2:error estimates and adaptivity[J].Internat J Numer Methods Engrg,1992,33(7):1365-1382. doi: 10.1002/nme.1620330703
    [4]
    林群,朱起定.有限元的预处理和后处理理论[M].上海:上海科学技术出版社,1994.
    [5]
    陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002.
    [6]
    Ascher U,Christiansen J,Russell R D.Algorithm 569,COLSYS:Collocation software for boundary value ODEs[J].ACM Trans Math Software,1981,7(2):223-229. doi: 10.1145/355945.355951
    [7]
    YUAN Si.The Finite Element Method of Lines[M].Beijing-New York:Science Press,1993.
    [8]
    袁驷.从矩阵位移法看有限元应力精度的损失与恢复[J].力学与实践,1998,20(4):1-6.
    [9]
    袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法[J].工程力学,2004,21(2):1-9.
    [10]
    袁驷,王枚,和雪峰.一维C1有限元超收敛解答计算的EEP法[J].工程力学,2006,23(2):1-9.
    [11]
    王玫,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1224-1134.
    [12]
    袁驷,林永静.二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法[J].计算力学学报,2007,24(2):142-147.
    [13]
    袁驷,王枚,王旭.二维有限元线法超收敛解答计算的EEP法[J].工程力学,2007,24(1):1-10.
    [14]
    袁驷,和雪峰.基于EEP法的一维有限元自适应求解[J].应用数学和力学,2006,27(11):1280-1291.
    [15]
    赵庆华,周叔子,朱起定.一维有限元后处理的EEP的数学分析[J].应用数学和力学,2007,28(4):401-405.
    [16]
    袁驷,王旭,邢沁妍,等.具有最佳超收敛阶的EEP法计算格式:Ⅰ 算法公式[J].工程力学,2007,24(10):1-5.
    [17]
    袁驷,邢沁妍,王旭,等.具有最佳超收敛阶的EEP法计算格式:Ⅱ 数值算例[J].工程力学,2007,24(11):1-5.
    [18]
    袁驷,赵庆华.具有最佳超收敛阶的EEP法计算格式:Ⅲ 数学证明[J].工程力学,2007,24(12):1-6.
    [19]
    Douglas J,Dupont T.Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces[J].Numerical Mathematics,1974,22(2):99-109. doi: 10.1007/BF01436724
    [20]
    Strang G,Fix G.An Analysis of the Finite Element Method[M].London:Prentice-Hall,1973.
    [21]
    王旭.基于EEP法的一维有限元与二维有限元线法自适应分析[D].博士学位论文.北京:清华大学,2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3049) PDF downloads(623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return