CHEN Rong-san. Computation of Compressible Flows With High Density Ratio and Pressure Ratio[J]. Applied Mathematics and Mechanics, 2008, 29(5): 609-617.
Citation: CHEN Rong-san. Computation of Compressible Flows With High Density Ratio and Pressure Ratio[J]. Applied Mathematics and Mechanics, 2008, 29(5): 609-617.

Computation of Compressible Flows With High Density Ratio and Pressure Ratio

  • Received Date: 2007-10-31
  • Rev Recd Date: 2008-04-14
  • Publish Date: 2008-05-15
  • WENO method,RKDG method,RKDG method with original Ghost Fluid method and RKDG method with modified Ghost Fluid method were applied to single-medium and two-medium air-air,air-liquild compressible flow with high density and pressure ratios.Numerical comparison and analysis for the methods above were given.Numerical results show that,compared with the other methods,RKDG method with modified Ghost Fluid method can obtain high resolution and the correct position of the shock,the computed solutions are converge to physical solutions as the mesh refined.
  • loading
  • [1]
    Reed W H,Hill T R.Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scienfic Laboratory Report LA-UR,1973,73-479.
    [2]
    LeSaint P,Raviart P A.On a finite element methods for solving the neutron transport equation[A].de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,89-145.
    [3]
    Cockburn B,Gremaud P-A.A prior error estimates for numerical methods for scalar conservation laws—Part Ⅰ:The general approach[J].Math Comp,1996,65(214): 533-573. doi: 10.1090/S0025-5718-96-00701-6
    [4]
    Cockburn B,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅱ:General framework[J].Math Comp,1989,52(186):411-435.
    [5]
    Cockburn B,Lin S-Y,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅲ:One dimensional systems[J].J Comput Phys,1989,84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
    [6]
    Cockburn B,Hou S,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅳ:The multidimensional case[J].Math Comp,1990,54(190):541-581.
    [7]
    Cockburn B,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅴ:Multidimensional systems[J].J Comput Phys,1998,141(2):199-224. doi: 10.1006/jcph.1998.5892
    [8]
    Hirt C W,Nichols B D.Volume of fluid(VOF) method for the dynamics of free boundary[J].J Comput Phys,1981,39(1):201-225. doi: 10.1016/0021-9991(81)90145-5
    [9]
    Mulder W,Osher S,Sethian J A.Computing interface motion in compressible gas dynamics[J]. J Comput Phys,1992,100(2):209-228. doi: 10.1016/0021-9991(92)90229-R
    [10]
    Marshall G.A front tracking method for one-dimensional moving boundary problems[J].SIAM J Sci Compt,1986,7(1): 252-263. doi: 10.1137/0907017
    [11]
    Fedkiw R P,Aslam T,Merriman B,et al.A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[J].J Comput Phys,1999,152(2):457-492. doi: 10.1006/jcph.1999.6236
    [12]
    Liu T G,Khoo B C,Yeo K S.Ghost fluid method for strong shock-impacting on material interface[J].J Comput Phys,2003,190(2):651-681. doi: 10.1016/S0021-9991(03)00301-2
    [13]
    陈荣三,蔚喜军.一维多介质可压缩流的高精度RKDG有限元方法[J].计算物理,2006,23(1):43-49.
    [14]
    Tang H Z,Liu T G.A note on the conservative schemes for the Euler equations[J].J Comput Phys,2006,218(2):451-459. doi: 10.1016/j.jcp.2006.03.035
    [15]
    Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].New York:Springer, 2003.
    [16]
    刘儒勋,刘晓平,张磊,等.运动界面的追踪和重构方法[J].应用数学和力学, 2004,25(3): 279-290.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2668) PDF downloads(637) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return