XU Xin-sheng, WANG Ga-ping, SUN Fa-ming. Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain[J]. Applied Mathematics and Mechanics, 2008, 29(6): 639-648.
Citation: XU Xin-sheng, WANG Ga-ping, SUN Fa-ming. Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain[J]. Applied Mathematics and Mechanics, 2008, 29(6): 639-648.

Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain

  • Received Date: 2008-02-04
  • Rev Recd Date: 2008-04-17
  • Publish Date: 2008-06-15
  • A new analytical method of symplectic system, Hamiltonian system, was introduced for solving the problem of the Stokes flow in two-dimensional rectangular domain. In the system, the fundamental problem was reduced to eigenvalue and eigensolution problem, and the solution and boundary conditions can be expanded by eigensolutions employing adjoint relationships of the symplectic ortho-normalization between the eigensolutions. The close method of the symplectic enginsolution was presented based on the completeness of the symplectic eigensolution space. The results explain that fundamental flows can be described by zero eigenvalue eigensolutions and local effects by nonzero eigenvalue eigensolutions. Numerical examples give various flows in rectangular domain and show the effectiveness of the method for solving a variety of problems. Meanwhile, the method is a path for solving other problems.
  • loading
  • [1]
    Burggraf O R. Analytical and numerical studies of the structure of steady separated flows[J].J Fluid Mech,1966,24(1):113-151. doi: 10.1017/S0022112066000545
    [2]
    Pan F, Acrivos A. Steady flows in rectangular cavities[J].J Fluid Mech,1967,28(4):643-655. doi: 10.1017/S002211206700237X
    [3]
    Kelmanson M A, Lonsdale B. Eddy genesis in the double-lid-driven cavity[J].Q J Mech Appl Math,1996,49(4):633-655.
    [4]
    林长圣.双板驱动矩形空腔STOKES流动的数值模拟[J].南京工程学院学报(自然科学版),2004,2(4):29-35.
    [5]
    Joseph D D, Sturges L. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part Ⅱ[J].SIAM J Appl Math,1978,34(1):7-26. doi: 10.1137/0134002
    [6]
    Smith R C T. The bending of a semi-infinite strip[J].Austral J Sci Res,1952,5(2):227-237.
    [7]
    Sturges L D. Stokes flow in a two-dimensional cavity with moving end walls[J].Phys Fluids,1986,29(5):1731-1734. doi: 10.1063/1.866008
    [8]
    Shankar P N. The eddy structure in Stokes flow in a cavity[J].J Fluid Mech,1993,250(1):371-383. doi: 10.1017/S0022112093001491
    [9]
    Gaskell P H, Savage M D, Summers J L,et al.Stokes flow in closed, rectangular domains[J].Appl Math Model,1998,22(9):727-743. doi: 10.1016/S0307-904X(98)10060-4
    [10]
    Khuri S A. Biorthogonal series solution of Stokes flow problems in sectorial regions[J].SIAM J Appl Math,1996,56(1):19-39. doi: 10.1137/0156002
    [11]
    Meleshko V V. Steady Stokes flow in a rectangular cavity[J].Proc Roy Soc London,Ser A,1996,452(1952):1999-2022. doi: 10.1098/rspa.1996.0106
    [12]
    Meleshko V V. Gomilko A M. Infinite systems for a biharmonic problem in a rectangle[J].Proc Roy Soc London,Ser A,1997,453(1965):2139-2160. doi: 10.1098/rspa.1997.0115
    [13]
    Srinivasan R. Accurate solutions for steady plane flow in the driven cavity —Ⅰ:Stokes flow[J].Zeitschrift für Angewandte Mathematik und Physik,1995,46(4):524-545. doi: 10.1007/BF00917442
    [14]
    Weiss R F, Florsheim B H. Flow in a cavity at low Reynolds number[J].Phys Fluids,1965,8(9):1631-1635. doi: 10.1063/1.1761474
    [15]
    Munson B R, Sturges L D.Low Reynolds number flow in a rotating tank with barriers[J].Phys Fluids,1983,26(5):1173-1176. doi: 10.1063/1.864281
    [16]
    Shen C, Floryan J M. Low Reynolds number flow over cavities[J].Phys Fluids,1985,28(11):3191-3202. doi: 10.1063/1.865366
    [17]
    Taneda S. Visualization of separating Stokes flows[J].J Phys Soc Jpn,1979,46(6):1935-1942. doi: 10.1143/JPSJ.46.1935
    [18]
    O'Brien V. Closed streamlines associated with channel flow over a cavity[J].Phys Fluids,1972,15(12):2089-2097. doi: 10.1063/1.1693840
    [19]
    Wang C Y. Flow over a surface with parallel grooves[J].Phys Fluids,2003,15(5):1114-1121. doi: 10.1063/1.1560925
    [20]
    Zhong W X.Duality System in Applied Mechanics and Optimal Control[M].New York:Kluwer Academic Publishers,2004,188-191.
    [21]
    张鸿庆, 阿拉坦仓, 钟万勰. Hamilton体系与辛正交系的完备性[J].应用数学和力学,1997,18(3):217-221.
    [22]
    徐新生,王尕平.Stokes 流问题中的辛本征解方法[J].力学学报,2006,38(5):682-687.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2980) PDF downloads(646) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return