GONG Lei, WU Jian-kang, Wang Lei, CHAO Kan. Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow[J]. Applied Mathematics and Mechanics, 2008, 29(6): 649-656.
Citation: GONG Lei, WU Jian-kang, Wang Lei, CHAO Kan. Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow[J]. Applied Mathematics and Mechanics, 2008, 29(6): 649-656.

Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow

  • Received Date: 2007-12-18
  • Rev Recd Date: 2008-03-24
  • Publish Date: 2008-06-15
  • An analytical solution of periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in two-dimensional uniform microchannel based on Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow was presented. Dimensional analysis indicates that electric-viscous force depends on three factors: 1) Electricviscous coefficient representing a ratio of maximum of electric-viscous force to pressure gradient in steady state; 2) Profile function describing distribution profile of electrio-viscous force in channel section; 3) Coupling coefficient reflecting behavior of the amplitude damping and the phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number. Flowinduced electric field varies very slowly when frequency Reynolds number is less than 1, and rapidly decreases when frequency Reynolds number is larger than 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.
  • loading
  • [1]
    LI Dong-qing.Electrokinetics in Microfluidics[M].New York:Elsevier,2004.
    [2]
    Clayton Julie.Go with the microflow[J].Nature Methods,2005,2(8):621-627. doi: 10.1038/nmeth0805-621
    [3]
    Mohamed Gad-el-Hak.The MEMS Handbook[M].New York: CRC Press,1999.
    [4]
    李志华,林建忠,聂德明.消除毛细管电泳槽道中弯道导致的扩散效应的新方法[J].应用数学和力学,2005,26(6):631-636.
    [5]
    张凯,林建忠,李志华.电渗驱动微通道流中的扩散[J].应用数学和力学,2006,27(5):512-518.
    [6]
    WANG Xian-ming, WU Jian-kang. Flow behavior of periodical electroosmosis in microchannel for biochips[J].J Colloid Interface Sci,2006,293(3):483-488. doi: 10.1016/j.jcis.2005.06.080
    [7]
    Ren Carolyn L,LI Dong-qing. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels[J].Analytica Chimica Acta,2005,531(1):15-23. doi: 10.1016/j.aca.2004.09.078
    [8]
    Mala G M,LI D. Flow characteristics of water in microtubes[J].Internat J Heat Fluid Flow,1999,20(2):142-148. doi: 10.1016/S0142-727X(98)10043-7
    [9]
    龚磊, 吴健康.微通道液体流动双电层主力效应[J].应用数学和力学,2006,27(10):1219-1225.
    [10]
    Hunter R J.Zeta Potential in Colloid Science[M].London:Academic Press,1981.
    [11]
    Erickson David, LI Dong-qing, Werner Carsten. An improved method of determining the zeta-potential and surface conductance[J].J Colloid Interface Sci,2001,232(1):186-197.
    [12]
    Mikhailov O V, Haartsen M W. Electroseismic investigation of the shallow subsurface:field measurements and numerical modeling[J].Geophysics,1997,62(1): 97-105. doi: 10.1190/1.1444150
    [13]
    Mansouri Ali, Scheuerman Carl, Bhattacharjee Subir,et al.Transient streaming potential in a finite length microchannel[J].J Colloid Interface Sci,2005,292(2):567-580. doi: 10.1016/j.jcis.2005.05.094
    [14]
    Frank H J, Van der Heyden, Derek Stein,et al.Streaming currents in a single nanofluidic channel[J].Phys Rev Lett,2005,95(11):116104. doi: 10.1103/PhysRevLett.95.116104
    [15]
    Rice C L,Whitehead R.Electrokinetic flow in narrow cylindrical capillary[J].J Phys Chem,1965,69(11):4017-4024. doi: 10.1021/j100895a062
    [16]
    LI Dong-qing. Electro-viscous effects on pressure-driven liquid flow in microchannels[J].Colloids and Surfaces Physicochemical and Engineering Aspects,2001,195(1):35-37. doi: 10.1016/S0927-7757(01)00828-7
    [17]
    Packard Robert Gay.Streaming potential across glass capillaries for sinusoidal pressure[J].J Chem Phys,1953,21(2):303-307. doi: 10.1063/1.1698876
    [18]
    Pride Steve.Governing equations for coupled electromagnetics and acoustics of porous media[J].Phys Rev B,1994,50(15):678-696.
    [19]
    Philip M Reppert,Frank Dale Morgan,David P Lesmes.Frequency-dependent streaming potentials[J].J Colloid Interface Sci,2001,234(1):194-203. doi: 10.1006/jcis.2000.7294
    [20]
    Overbeek J Th.Irreversible Systems[M].New York:Elsevier, 1952.
    [21]
    Erickson D, LI D. Analysis of alternating current electroosmotic flows in a rectangular microchannel[J].Langmuir,2003,19(13):5421-5430. doi: 10.1021/la027035s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3111) PDF downloads(1061) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return