ZHANG Yong-ming, ZHOU Heng. PSE as Applied to Problems of Transition in Compressible Boundary Layers[J]. Applied Mathematics and Mechanics, 2008, 29(7): 757-763.
Citation: ZHANG Yong-ming, ZHOU Heng. PSE as Applied to Problems of Transition in Compressible Boundary Layers[J]. Applied Mathematics and Mechanics, 2008, 29(7): 757-763.

PSE as Applied to Problems of Transition in Compressible Boundary Layers

  • Received Date: 2008-05-21
  • Rev Recd Date: 2008-05-26
  • Publish Date: 2008-07-15
  • A new idea of using the parabolized stability equation(PSE) method to predict the laminarturbulent transition is proposed.It was tested in the prediction of the location of transition for compressible boundary layers on flat plates,and the results were compared with those obtained by direct numerical simulations(DNS).The agreement is satisfactory.The reason for the agreement was found to be that the PSE method does faithfully reproduce the mechanism leading to the breakdown process in laminar-turbulent transition,i.e.the modification of mean flow profile leads to a remarkable change of its stability characteristics.
  • loading
  • [1]
    黄章峰,曹伟,周恒.超音速平板边界层转捩中层流突变为湍流的机理——时间模式[J].中国科学,G辑,2005,35(5):537-547.
    [2]
    曹伟,黄章峰,周恒.超音速平板边界层转捩中层流突变为湍流的机理研究[J].应用数学和力学,2006,27(4):379-386.
    [3]
    Cebeci T, Stewartson K.On stability and transition in three-dimensional flows[J].AIAA J,1980,18(4):398-405. doi: 10.2514/3.50772
    [4]
    Cebeci T, Shao J P,Chen H H,et al.The preferred approach for calculating transition by stability theory[A].In:Proceeding of International Conference on Boundary and Interior Layers[C]. Toulouse,France:Institute for Numerical Computation and Analysis,2004.
    [5]
    Crouch J D, Kosorygin V S, Ng L L. Modeling the effects of steps on boundary-layer transition[A].In:Govindarajan Rama,Ed.Proceedings of the Sixth IUTAM Symposium on Laminar-Turbulent Transition[C].Bangalore,India:IUTAM,2004.
    [6]
    苏彩虹,周恒.零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报[J].应用数学和力学,2007,28(5):505-513.
    [7]
    王新军,罗纪生,周恒.平面槽道流中层流-湍流转捩的“breakdown”过程的内在机理[J].中国科学,G辑,2005,35(1):71-78.
    [8]
    TANG Hong-tao,LUO Ji-sheng,ZHOU Heng.Mechanics of breakdown in laminar-turbulent transition of incompressible boundary layer on a flat plate[J].Transactions of Tianjin University,2007,13(2):79-87.
    [9]
    李宁.基于空间模式的平板边界层层流到湍流转捩的研究[D].博士论文.天津:天津大学,2007.
    [10]
    Bertolotti F P, Herbert Th, Spalart P R. Linear and nonlinear stability of the Blasius boundary layer[J].Journal of Fluid Mechanics,1992,242(1):441-474. doi: 10.1017/S0022112092002453
    [11]
    Esfahanian V, Hejranfar K, Sabetghadam F. Linear and nonlinear PSE for stability analysis of the Blasius boundary layer using compact scheme[J].Journal of Fluids Engineering,2001,123(3):545-550. doi: 10.1115/1.1385833
    [12]
    Herbert Th. Parabolized stability equations[J].Annual Review of Fluid Mechanics,1997,29(1):245-283. doi: 10.1146/annurev.fluid.29.1.245
    [13]
    Bertolotti F P, Herbert Th. Analysis of the linear stability of compressible boundary layers using the PSE[J].Theoretical and Computational Fluid Dynamics,1991,3(2):117-124. doi: 10.1007/BF00271620
    [14]
    Bertolotti F P. Compressible boundary layer stability analyzed with the PSE equations[R]. AIAA Paper,1991,1637.
    [15]
    Hu S H, Zhong X. Nonparallel stability analysis of compressible boundary layer using 3-D PSE[R]. AIAA Paper,1999,0813.
    [16]
    Chang C L,Malik M R, Erlebacher G,et al.Compressible stability of growing boundary layers using parabolized stability equations[R]. AIAA Paper,1991,1636.
    [17]
    张永明,周恒.抛物化稳定性方程在可压缩边界层中应用的检验[J].应用数学和力学,2007,28(8):883-893.
    [18]
    张永明,周恒.PSE在超音速边界层二次失稳问题中的应用[J].应用数学和力学,2008,29(1):1-7.
    [19]
    黄章峰.超音速边界层从层流到湍流的转捩机理及湍流特性[D]. 博士论文.天津:天津大学,2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3150) PDF downloads(615) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return