MO Jia-qi. Singular Perturbation for the Weakly Nonlinear Reaction Diffusion Equation With Boundary Perturbation[J]. Applied Mathematics and Mechanics, 2008, 29(8): 1003-1008.
Citation: MO Jia-qi. Singular Perturbation for the Weakly Nonlinear Reaction Diffusion Equation With Boundary Perturbation[J]. Applied Mathematics and Mechanics, 2008, 29(8): 1003-1008.

Singular Perturbation for the Weakly Nonlinear Reaction Diffusion Equation With Boundary Perturbation

  • Received Date: 2007-03-21
  • Rev Recd Date: 2008-07-02
  • Publish Date: 2008-08-15
  • A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation is considered under suitable conditions.Firstly,by dint of regular perturbation method,the outer solution of the original problem was obtained.Secondly,by using the stretched variable and the expanding theory of power series,the initial layer term of solution was constructed.And then,by using the theory of differential inequalities the asymptotic behavior of solutions for the initial boundary value problems was studied.finally,using some relational inequalities the existence and uniqueness of solution for the original problem and the uniforntly valid asympfolic estimation were discussed.
  • loading
  • [1]
    de Jager E M, Jiang F R.The Theory of Singular Perturbation[M].Amsterdam:North-Holland Publishing Co,1996.
    [2]
    Ni W M,Wei J C. On positive solution concentrating on spheres for the Gierer-Meinhardt system[J].J Differential Equations,2006,221(1):158-189. doi: 10.1016/j.jde.2005.03.004
    [3]
    Zhang F. Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system[J].J Differential Equations,2004,205(1):77-155. doi: 10.1016/j.jde.2004.06.017
    [4]
    Khasminskii R Z, Yin G.Limit behavior of two-time-scale diffusion revisited[J].J Differential Equations,2005,212(1):85-113. doi: 10.1016/j.jde.2004.08.013
    [5]
    Marques I. Existence and asymptotic behavior of solutions for a class of nonlinear elliptic equations with Neumann condition[J].Nonlinear Anal,2005,61(1):21-40. doi: 10.1016/j.na.2004.11.006
    [6]
    Bobkova A S. The behavior of solutions of multidimensional singularly perturbed system with one fast variable[J].J Differential Equations,2005,41(1):23-32.
    [7]
    MO Jia-qi. A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289-293. doi: 10.1006/jmaa.1993.1307
    [8]
    MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China, Ser A,1989,32(11):1306-1315.
    [9]
    MO Jia-qi,LIN Wan-tao.A nonlinear singular perturbed problem for reaction diffusion equations with boundary perturbation[J].Acta Math Appl Sinica,2005,21(1):101-104. doi: 10.1007/s10255-005-0220-4
    [10]
    MO Jia-qi, Shao Salley.The singularly perturbed boundary value problems for higher-order semilinear elliptic equations[J].Advances in Math,2001,30(2):141-148.
    [11]
    MO Jia-qi, ZHU Jiang,WANG Hui. Asymptotic behavior of the shock solution for a class of nonlinear equations[J].Progress in Natural Sci,2003,13(9):768-770. doi: 10.1080/10020070312331344400
    [12]
    MO Jia-qi, LIN Wan-tao,ZHU Jiang. A variational iteration solving method for ENSO mechanism[J].Progress in Natural Sci,2004,14(12):1126-1128. doi: 10.1080/10020070412331344921
    [13]
    MO Jia-qi, WANG Hui,LIN Wan-tao.Varitional iteration solving method for El Nino phenomenon atmpspheric physics of nonlinear model[J].Acta Oceanol Sinica,2005,24(5):35-38.
    [14]
    MO Jia-qi, WANG Hui,LIN Wan-tao.Singularly perturbed solution of a sea-air oscillator model for the ENSO[J].Chin Phys,2006,15(7):1450-1453. doi: 10.1088/1009-1963/15/7/011
    [15]
    MO Jia-qi, WANG Hui,LIN Wan-tao,et al.Varitional iteration method foe solving the mechanism of the equatorial Eastern Pacific El Nio-Southern Oscillation[J].Chin Phys,2006,15(4):671-675. doi: 10.1088/1009-1963/15/4/003
    [16]
    莫嘉琪,王辉,林万涛.厄尔尼诺-南方涛动时滞海-气振子耦合模型[J].物理学报,2006,55(7):3229-3232.
    [17]
    MO Jia-qi, WANG Hui. A class of nonlinear nomlocal singularly perturbed problems for reaction diffusion equations[J].J Biomathematics,2002,17(2):143-148.
    [18]
    莫嘉琪. HIV传播人群生态动力学模型[J].生态学报,2006,26(1):104-107.
    [19]
    Protter M H, Weinberger H F.Maximum Principles in Differential Equations[M].New York: Prentice-Hall Inc,1967.
    [20]
    Pao C V. Comparison methods and stability analysis of reaction diffusion systems[J].Lecture Notes in Pure and Appl Math,1994,162(1):277-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2821) PDF downloads(828) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return