SU Xiao-hong, ZHENG Lian-cun, JIANG Feng. Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1101-1106.
Citation: SU Xiao-hong, ZHENG Lian-cun, JIANG Feng. Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1101-1106.

Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids

  • Received Date: 2008-03-17
  • Rev Recd Date: 2008-07-15
  • Publish Date: 2008-09-15
  • A theoretical analysis for laminar boundary layer flow in power law non-Newtonian fluid was presented. The Adomian analytical decomposition technique was presented and an approximate analytical solution was obtained. The approximate analytical solution can be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solution were verified using numerical solutions. Moreover, the approximate solution can be successfully applied to provide the values of skin friction coefficient in the power law non-Newtonian fluid.
  • loading
  • [1]
    Schlichting H.Boundary Layer Theory[M].New York: McGraw-Hill Press,1979.
    [2]
    Schowalter W R. The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions[J].AIChE Journal,1960,6(1):24-28. doi: 10.1002/aic.690060105
    [3]
    Acrivos A, Shah M J, Petersen E E.Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces[J].AIChE Journal,1960,6(2):312-317. doi: 10.1002/aic.690060227
    [4]
    Nachman A, Callegari A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[J].SIAM J Appl Math,1980,38(2):275-281. doi: 10.1137/0138024
    [5]
    Howell T G. Momentum and heat transfer on a continuous moving surface in power law fluid[J].Internat J Heat Mass Transfer,1997,40(8):1853-1861. doi: 10.1016/S0017-9310(96)00247-5
    [6]
    Rao J H, Jeng D R, Dewitt K J. Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall[J].Internat J Heat Mass Transfer,1999,42(15):2837-2847. doi: 10.1016/S0017-9310(98)00360-3
    [7]
    Zheng L C, Su X H, Zhang X X.Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium[J].International Journal of Pure and Applied Mathematics,2005,19(4):541-552.
    [8]
    Zheng L C, Ma L X, He J C. Bifurcation solutions to a boundary layer problem arising in the theory of power law fluids[J].Acta Mathematica Scientia,2000,20(1):19-26.
    [9]
    Lu C Q, Zheng L C. Similarity solutions of a boundary layer problem in power law fluids through a moving flat plate[J].International Journal of Pure and Applied Mathematics,2004,13(2):143-166.
    [10]
    Hussaini M Y, Lakin W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[J].SIAM J Appl Math,1987,47(4):699-709. doi: 10.1137/0147048
    [11]
    Zheng L C,He J C.Existence and non-uniqueness of positive solutions to a non-linear boundary value problems in the theory of viscous fluids[J].Dynamic Systems and Applications,1999,8(2):133-145.
    [12]
    Soewono E, Vajravelu K, Mohapatra R N. Existence and non-uniqueness of solutions of a singular nonlinear boundary-layer problem[J].J Math Anal Appl,1991,159(1):251-270. doi: 10.1016/0022-247X(91)90234-Q
    [13]
    Akcay M, Ykselen M A. Drag reduction of a non-Newtonian fluid by fluid injection on a moving wall[J].Archive of Applied Mechanics,1999,69(2):215-225. doi: 10.1007/s004190050215
    [14]
    Wang T Y. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids[J].Internat J Heat Mass Transfer,1995,16(1):56-61.
    [15]
    Hassanien I A,Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet[J].Mathematical and Computer Modelling,1998,28(9):105-116.
    [16]
    Adomian G.Nonlinear Stochastic Systems Theory and Applications to Physics[M].Dordrecht: Academic Press, 1989.
    [17]
    Zheng L C, Chen X H, Zhang X X. Analytical approximats for a boundary layer flow on a stretching moving surface with a power velocity[J].International Journal of Applied Mechanics and Engineering,2004,9(4):795-802.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2692) PDF downloads(546) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return