LI Kai-tai, SHI Feng. Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1237-1248.
Citation: LI Kai-tai, SHI Feng. Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1237-1248.

Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders

  • Received Date: 2008-02-01
  • Rev Recd Date: 2008-08-22
  • Publish Date: 2008-10-15
  • The shape problem of interface surface of bicomponent flows between two concentric rotating cylinders is investigated.By the tool of tensor analysis,this problem can be reduced to an isoperimetric problem of energy functional when neglecting the effects of dissipative energy caused by viscosity.The associated Eule-rLagrangian equation,which is a nonlinear elliptic boundary value problem of second order was derived.Moreover,in the case of considering the effects of dissipative energy,another total energy functional with dissipative energy to characterize the geometric shape of interface surface was proposed,and the corresponding Eule-rLagrangian equation which is also a nonlinear elliptic boundary value problem of second order was obtained.Thus,the problem of geometric shape is transformed into the nonlinear boundary value problem of second order in both cases.
  • loading
  • [1]
    李开泰,黄艾香.张量分析及其应用[M].北京:科学出版社,2004.
    [2]
    王贺元,李开泰.Couette-Taylor流的谱Galerkin逼近[J].应用数学和力学,2004,25(10):1083-1092.
    [3]
    张引娣,李开泰.两个非同心旋转圆柱间粘性流动的广义雷诺方程及其本流[J].高校应用数学学报A辑,2008,23(2):127-139.
    [4]
    韩式方.非牛顿流体非定常旋转流动计算机智能解析理论[J].应用数学和力学,1999,20(11):1149-1160.
    [5]
    何友声,鲁传敬,陈学农.二层流体中沿任意路径运动的奇点解析解[J].应用数学和力学,1991,12(2):119-134.
    [6]
    卢东强,戴世强,张宝善.一个二流体系中非线性水波的Hamilton描述[J].应用数学和力学,1999,20(4):331-336.
    [7]
    Preziosi L,Joseph D D. The run-off condition for coating and rimming flows[J].J Fluid Mech,1988,187:99-113. doi: 10.1017/S0022112088000357
    [8]
    Joseph D D, Preziosi L. Stability of rigid motions and coating films in bicomponent flows of immiscible liquids[J].J Fluid Mech,1987,185:323-351. doi: 10.1017/S0022112087003197
    [9]
    Joseph D D, Renardy Y, Renardy M,et al.Stability of rigid motions and rollers in bicomponent flows of immiscible liquids[J].J Fluid Mech,1985,153:151-165. doi: 10.1017/S0022112085001185
    [10]
    Girault V, López H,Maury B.One time-step finite element discretization of the equation of motion of two-fluid flows[J].Numerical Methods for Partial Differential Equations,2006,22(3):680-707.[JP2]. Wu J, Yu S T, Jiang B N.Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model[J].Internat J Numer Methods Fluids,1998,42(4):583-600. doi: 10.1002/num.20117
    [12]
    Cruchaga M, Celentano D, Breitkopf P,et al.A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows[J].Internat J Numer Methods Fluids,2006,66(13):2035-2063.
    [13]
    Lee S J, Changb K S, Kim S J. Surface tension effect in the two-fluids equation system[J].International Journal of Heat and Mass Transfer,1998,41(18):2821-2826. doi: 10.1016/S0017-9310(98)00043-X
    [14]
    Ohmori K. Numerical solution of two-fluid flows using finite element method[J].Appl Math Comput,1998,92(2):125-133. doi: 10.1016/S0096-3003(97)10036-4
    [15]
    Smolianski A. Finite-element/level-set/operator-splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces[J].Internat J Numer Methods Fluids,2005,48(3):231-269. doi: 10.1002/fld.823
    [16]
    Sousa F S, Mangiavacchi N. A Lagrangian level-set approach for the simulation of incompressible two-fluid flows[J].Internat J Numer Methods Fluids,2005,47(10/11):1393-1401. doi: 10.1002/fld.899
    [17]
    Li Z R, Jaberi A, Shih T. A hybrid Lagrangian-Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows[J].Internat J Numer Methods Fluids,2008,56(12):2271-2300. doi: 10.1002/fld.1621
    [18]
    Sussman M, Smereka P,Osher S. A level set approach to computing solutions to incompressible two-phase flow[J].J Comp Phys,1994,114(1):146-159. doi: 10.1006/jcph.1994.1155
    [19]
    Unverdi S O, Tryggvason G.A front-tracking method for viscous, incompressible, multi-fluid flows[J].J Comp Phys,1992,100(1):25-37. doi: 10.1016/0021-9991(92)90307-K
    [20]
    Chang Y C, Hou T Y,Merriman B,et al.A level set formulation of Eulerian interface capturing methods for incompressible fluid flows[J].J Comp Phys,1996,124(2):449-464. doi: 10.1006/jcph.1996.0072
    [21]
    Galusinski C, Vigneaux P. On stability condition for bifluid flows with surface tension: Application to microfluidics[J].J Comp Phys,2008,227(12):6140-6164.
    [22]
    Sousa F S, Mangiavacchi N, Nonato L G,et al.A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces[J].J Comp Phys,2004,198(2):469-499. doi: 10.1016/j.jcp.2004.01.032
    [23]
    Berger M S.Nonlinearity and Functional Analysis[M].Lectures on Nonlinear Problems in Mathematical Analysis.New York,San Francisco, London:Academic Press,1977.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3072) PDF downloads(694) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return