LI Ming-jun, YANG Yu-yue, SHU Shi. Third-Order Modified Coefficient Scheme Based on the Essentially Non-Oscillatory Scheme[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1337-1346.
Citation: LI Ming-jun, YANG Yu-yue, SHU Shi. Third-Order Modified Coefficient Scheme Based on the Essentially Non-Oscillatory Scheme[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1337-1346.

Third-Order Modified Coefficient Scheme Based on the Essentially Non-Oscillatory Scheme

  • Received Date: 2007-10-30
  • Rev Recd Date: 2008-08-24
  • Publish Date: 2008-11-15
  • A third-order numerical scheme was presented for approximating solutions of multi dimensional hyperbolic conservation laws only using the modified coefficients of essentially non-oscillatory (MCENO) scheme without increasing the base points during the construction of the scheme. The construction process of scheme shows that the modified coefficient approach preserves the favourable properties inherent in the original essentially non-oscillatory (ENO) scheme for its essentially non-oscillation, total variation bounded (TVB) etc. The new scheme improves the accuracy by one order compared to the original one. Furthermore, the MCENO scheme was applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100 and solve the Lax shock-wave tube numerically. It is also noted that the ratio of CPU times used implementing the MCENO, the third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19. These indicate that the MCENO scheme improves the accuracy in smooth regions and has higher accuracy and better efficiency compared with the original ENO scheme.
  • loading
  • [1]
    Harten A,Engquist B,Osher S,et al.Uniformly high order accurate essentially non-oscillatory schemes Ⅲ[J].J Comput Phys,1987,71:231-303;ICASE Report No 86-22, April 1986. doi: 10.1016/0021-9991(87)90031-3
    [2]
    Liu X-D,Osher S. Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids[J].J Comput Phys,1998,142(2):304-330. doi: 10.1006/jcph.1998.5937
    [3]
    Liu X-D,Osher S,Chan T. Weighted essentially non-oscillatory schemes[J].J Comput Phys,1994,115(1):200-212. doi: 10.1006/jcph.1994.1187
    [4]
    Shu C-W,Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    [5]
    Shu C-W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅱ[J].J Comput Phys,1989,83(1):32-78. doi: 10.1016/0021-9991(89)90222-2
    [6]
    Jiang G-S,Shu C-W. Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126:202-228. doi: 10.1006/jcph.1996.0130
    [7]
    高智.摄动有限研究进展[J].力学进展,2000,30(2):200-215.
    [8]
    Gao Z,YANG G W. Perturbation finite volume method for convective-diffusion integral equation[J].Acta Mechanica Sinica,2004,20(6):580-590. doi: 10.1007/BF02485861
    [9]
    高智,柏威. 对流扩散方程的摄动有限体积(PFV)方法及讨论[J].力学学报,2004,36(1):88-93.
    [10]
    Glimm J,Grove J,LI X,et al.The dynamics of bubble growth for Rayleigh-Taylor unstable interface[J].Physics of Fluids,1988,31:447-465. doi: 10.1063/1.866826
    [11]
    Xu Z F,Shu C W.Anti-diffusive flux corrections for high order finite difference WENO schemes[J].J Comput Phys,2005,205(2):458-485. doi: 10.1016/j.jcp.2004.11.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2816) PDF downloads(793) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return