Citation: | HE Ying, HAN Bo. Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1355-1346. |
[1] |
Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range[J].Acoustical Society of America,1956,28(2):168-178. doi: 10.1121/1.1908239
|
[2] |
Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency range[J].Acoustical Society of America,1956,28(2):168-178. doi: 10.1121/1.1908239
|
[3] |
Dai N,Vafidis A,Kanasewich E R.Wave propagation in heterogeneous,porous media:A velocity-stress,finite-difference method[J].Geophysics,1995,60(2):327-340. doi: 10.1190/1.1443769
|
[4] |
Prevost J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J].Soil Dynamics and Earthquake Engineering,1985,4(4):183-202. doi: 10.1016/0261-7277(85)90038-5
|
[5] |
Narasimhan T N,Witherspoon P A.An integrated finite difference method for analyzing fluid flow in porous media[J].Water Resources Research,1976,12(1):57-64. doi: 10.1029/WR012i001p00057
|
[6] |
Pedercini M,Patera A T,Cruz M E.Variational bound finite element methods for three-dimensional creeping porous media and sedimentation flows[J].International Journal for Numerical Methods in Fluids,1998,26(2):145-175. doi: 10.1002/(SICI)1097-0363(19980130)26:2<145::AID-FLD617>3.0.CO;2-O
|
[7] |
邵秀民,蓝志凌. 流体饱和多孔介质波动方程的有限元解法[J]. 地球物理学报.2000,43(2):264-277.
|
[8] |
SUN Wei-tao,YANG Hui-zhu.Elastic wavefield calculation for heterogeneous anisotropic porous media using the 3D irregular-grid finite-difference[J].Acta Mechanica Solida Sinica,2003,16(4):283-299.
|
[9] |
Hong T K,Kennett B L N. A wavelet-based method for simulation of two-dimensional elastic wave propagation[J].Geophysical Journal International,2002,150(3):610-638. doi: 10.1046/j.1365-246X.2002.01714.x
|
[10] |
Mustafa M T,Siddiqui A A. Wavelet optimized finite difference method with non-static regridding[J].Applied Mathematics and Computation,2007,18(6):203-211.
|
[11] |
Xiang J W,Chen X F,He Z J,et al. The construction of 1D wavelet finite elements for structural analysis[J].Computational Mechanics,2007,40(2):325-339. doi: 10.1007/s00466-006-0102-5
|
[12] |
张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法[J].地球物理学报,2005,48(5):1156-1166.
|
[13] |
LIAO Zhen-peng,Wong H L,YANG Bai-po,et al. A transmitting boundary for transient wave analyses[J].Scientia Sinica,A,1984,27(10):1063-1076.
|
[14] |
LIAO Zhen-peng,Wong H L.A transmitting boundary for the numerical simulation of elastic wave propagation[J].Soil Dynamics and Earthquake Engineering,1984,3(4):174-183. doi: 10.1016/0261-7277(84)90033-0
|
[15] |
Beylkin G. On the representation of operators in bases of compactly supported wavelets[J].SIAM Numerical Analysis,1992,29(1):1716-1740. doi: 10.1137/0729097
|
[16] |
Hajji M A,Melkonian S,Vaillancourt V.Representation of differential opterator in wavelet basis[J].Computers and Mathematics with Applications,2004,47(6):1011-1033. doi: 10.1016/S0898-1221(04)90083-1
|
[17] |
Kelly K R,Ward R W,Treitel S,et al.Synthetic seismograms: a finite-difference approach[J].Geophysies,1976,41(1):2-27.
|