LIU Yang, LI Hong, HE Siriguleng. Mixed Time Discontinuous Space-Time Finite Element Method for Convection Diffusion Equations[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1435-1442.
Citation: LIU Yang, LI Hong, HE Siriguleng. Mixed Time Discontinuous Space-Time Finite Element Method for Convection Diffusion Equations[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1435-1442.

Mixed Time Discontinuous Space-Time Finite Element Method for Convection Diffusion Equations

  • Received Date: 2008-03-01
  • Rev Recd Date: 2008-10-16
  • Publish Date: 2008-12-15
  • A mixed time discontinuous space-time finite element scheme for second order convection diffusion problems is constructed and analyzed.The order of the equation was lowered by mixed finite element method. And the low order equation was discretized by space-time finite element method,continuous in space but discontinuous in time.The stability,existence,uniqueness and convergence of the approximate solutions were proved.Finally,numerical results were presented to illustrate the efficiency of the method.
  • loading
  • [1]
    Reed N H, Hill T R.Triangle mesh methods for the Neutron transport equation[R]. Los Alamos Scientific Laboratory,Report LA2 UR-73-479,1973.
    [2]
    Cockburn B,Lin S Y.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one-dimensional systems[J].J Comp Phys,1989,84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
    [3]
    Cockburn B,Hou S C,Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin method for conservation laws Ⅳ: the multidimensional case[J].J Comp Phys,1990,54(3):545-581.
    [4]
    Thomée Vider.Galerkin Finite Element Methods for Parabolic Problems[M].New York:Springer-Verlag,1997.
    [5]
    李宏,郭彦. 四阶抛物方程的间断时空混合有限元法[J].内蒙古大学学报(自然科学版),2006,37(1):20-22.
    [6]
    Brezzi F,Hughes T J R,Marini L D,et al.Mixed discontinuous galerkin methods for darcy flow[J].Journal of Scientific Computing,2005,22(2):119-145. doi: 10.1007/s10915-004-4150-8
    [7]
    李宏,刘儒勋. 抛物方程的时空有限元方法[J].应用数学和力学,2001,22(6):613-624.
    [8]
    汤琼,陈传淼,刘罗华.Schrdinger方程的时空有限元方法与守恒性[J].应用数学和力学,2006,27(3):300-304.
    [9]
    CHEN Zhang-xin.Finite Element Methods and Their Applications[M].Berlin Heidelgerg:Springer-Verlag,2005.
    [10]
    YAN Jue,SHU Chi-wang.A Local discontinuous galerkin method for KdV-type equation[R]. NASA/CR-2001-211026 ICASE Report No. 2001-20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3118) PDF downloads(539) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return