HE Jun. Approximation for the First Passage Probability of Systems Under Nonstationary Random Excitation[J]. Applied Mathematics and Mechanics, 2009, 30(2): 245-252.
Citation: HE Jun. Approximation for the First Passage Probability of Systems Under Nonstationary Random Excitation[J]. Applied Mathematics and Mechanics, 2009, 30(2): 245-252.

Approximation for the First Passage Probability of Systems Under Nonstationary Random Excitation

  • Received Date: 2008-05-06
  • Rev Recd Date: 2008-12-05
  • Publish Date: 2009-02-15
  • An approximate method is presented for obtaining analytical solutions for the conditional fast passage piubability of systems under modulated white noise excitation, the method is based on VanMarcke's approximation, however, because the normalization of the response was introduced, the expected decay rates can be evaluated from the second-moment statistics instead of the correlation functions or spectrum density functions of the response of considered stnrcrures. Explicit solutions for the second-moment statistics of the response were given. The accuracy, efficiency and usage of the proposed method were demonstrated by the fast passage analysis of single-degree-of freedom (SDOF) linear systems under two special types of modulated white noise excitations.
  • loading
  • [1]
    Wen Y K, Chen H C. System reliability under time varying loads: Ⅰ[J].Internat J Engng Mech ASCE,1989,115(4): 808-823. doi: 10.1061/(ASCE)0733-9399(1989)115:4(808)
    [2]
    Beck A T, Melchers R E. On the ensemble crossing rate approach to time variant reliability analysis of uncertain structures[J].Internat J Probab Engng Mech,2004,19(1): 9-19. doi: 10.1016/j.probengmech.2003.11.018
    [3]
    Polidori D C, Beck J L, Papadimitriou C. New approximations for reliability integrals[J].Internat J Engng Mech ASCE,1999,125(4):466-475. doi: 10.1061/(ASCE)0733-9399(1999)125:4(466)
    [4]
    Bayer V, Bucher C. Importance sampling for the first passage problems of nonlinear structures[J].Internat J Probab Engng Mech,1999,14(1): 27-32. doi: 10.1016/S0266-8920(98)00014-9
    [5]
    Au S K, Beck J L. First excursion probability for linear system by very efficient important sampling[J].Internat J Probab Engng Mech,2001,16(2):193-207. doi: 10.1016/S0266-8920(01)00002-9
    [6]
    Roberts J B. First-passage probability for randomly excited systems: diffusion methods[J].Internat J Probab Engng Mech,1986,1(1): 66-81. doi: 10.1016/0266-8920(86)90029-9
    [7]
    Proppe C, Pradlwarter H J, Schuёller G I. Equivalent linearization and Monte Carlo simulation in stochastic dynamics[J].Internat J Probab Engng Mech,2003, 18(1):1-15. doi: 10.1016/S0266-8920(02)00037-1
    [8]
    Zhu W Q, Deng M L, Huang Z L. First-passage failure of quasi-integrable Hamiltonian systems[J].Internat J Appl Mech ASME,2002,69(2):274-282. doi: 10.1115/1.1460912
    [9]
    Coleman J J. Reliability of aircraft structures in resisting change failure[J]. Internat J Operations Reserch, 1959,7(4): 639-645.
    [10]
    VanMarcke E H. On the distribution of the first-passage time for normal stationary random process[J].Internat J Appl Mech ASME,1975,42(2): 215-220. doi: 10.1115/1.3423521
    [11]
    Lutes L D, Chen Y T, Tzuang S H. First-passage approximations for simple oscillators[J].Internat J Engng Mech Div ASCE,1980,106(EM6): 1111-1124.
    [12]
    Madsen P H, Krenk S. An integral equation method for the first-passage prolem in random vibration[J].Internat J Appl Mech ASME,1983,51(3): 674-679.
    [13]
    Langley R S. A first passage approximation for normal stationary random processes[J]. J Sound Vibration,1988,122(2): 261-275. doi: 10.1016/S0022-460X(88)80353-5
    [14]
    Engelund S, Rackwitz R, Lange C. Approximations of first-passage times for differentiable processes based on high-order threshold crossings[J].Internat J Probab Engng Mech,1995,10(1): 53-60. doi: 10.1016/0266-8920(94)00008-9
    [15]
    Naess A, Karlsen H C. Numerical calculation of the level crossing rate of second order stochastic Volterra systems[J].Internat J Probab Engng Mech,2004,19(2): 155-160. doi: 10.1016/j.probengmech.2003.11.012
    [16]
    何军. 非Gauss随机特性下的结构首次失效时间研究[J].应用数学和力学,2007,28(11): 1325-1332.
    [17]
    Song J, Kiureghian A D. Joint first-passage probability and reliability of systems under stochastic excitation[J].Internat J Engng Mech ASCE,2006,132(1): 65-77. doi: 10.1061/(ASCE)0733-9399(2006)132:1(65)
    [18]
    Iwan W D, Hou Z K. Explicit solutions for the response of simple systems subjected to nonstationary random excitation[J].Internat J Struct Saf,1989,6(2/4):77-86. doi: 10.1016/0167-4730(89)90011-8
    [19]
    Michaelov G, Sarkani S, Lutes L D. Spectral characteristic of nonstationary random processes response of a simple oscillator[J].Internat J Struct Saf,1999,21(2): 245-267. doi: 10.1016/S0167-4730(99)00019-3
    [20]
    Rice S O. Mathematical analysis of random noise[J].Bell System Technical Journal,1944,2: 282-332.[Re-published In: N Wax,Ed.Selected Papers on Noise and Stochastic Processes. [C]. New York: Dover, 1954].
    [21]
    Langley R S. On various definitions of the envelope of a random process[J].J Sound Vibration,1986,105(3): 503-512. doi: 10.1016/0022-460X(86)90175-6
    [22]
    Krenk S, Madsen H O, Madsen P H. Stationary and transient response envelopes[J]. Internat J Engng Mech ASCE,1983,109(1): 263-278. doi: 10.1061/(ASCE)0733-9399(1983)109:1(263)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2832) PDF downloads(675) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return