LI Wan-tong. Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1126-1132.
Citation:
LI Wan-tong. Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1126-1132.
LI Wan-tong. Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1126-1132.
Citation:
LI Wan-tong. Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1126-1132.
Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations
Received Date: 2002-03-25
Rev Recd Date:
2003-06-08
Publish Date:
2003-11-15
Abstract
The asymptotic behavior of a class of nonlinear delay difference equation was studied. Some sufficient conditions are obtained for permanence and global attractivity. The results can be applied to a class of nonlinear delay difference equations and to the delay discrete Logistic model and some known results are included.
References
[1]
Agarwal R P. Difference Equa tions and Inequalities [ M].New York:Dekker,1992.
[2]
Kocic V L, Ladas G.Global Behavior of Nonlinear Difference Equations of Higher Order With Applications[M].Boston: Kluwer Academic Publishers,1993.
[3]
Camouzis E,Ladas G,Rodrigues I W.On the rational recursive xn+1 =Bxn 2 /(1+xxn-1 2 ) [ J].Computers Math Appl,1994,28(1):37)43.
[4]
ZHANG De_cun,SHI Bao,GAI Ming_jiu.On the rational recursive sequence xn+1 =bxn 2 / (1+xxn-1 2 )[J].Indian J Pure Appl Math,2001,32(5):657 )663.
[5]
Kocic V L, Ladas G.Global attractivity in nonlinear delay difference equations [J].Proc Amer Math Soc,1992,115(4):1083)1088.
Relative Articles
[1] YAN Rui, LIU Guirong, LI Xiaocui. Nonlinear Stability of Traveling Wavefronts for a Discrete Cooperative Lotka-Volterra System With Delays [J]. Applied Mathematics and Mechanics, 2023, 44(4): 461-470. doi: 10.21656/1000-0887.430172
[2] ZHANG Xiaoyan. Existence of Critical Traveling Wave Solutions for a Class of Discrete Diffusion SIR Models With Nonlinear Incidence and Time Delay [J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326. doi: 10.21656/1000-0887.420111
[3] TIAN Hongqiao, ZHANG Zhixin, JIANG Wei. Finite-Time Stability of Fractional-Oder Linear Differential Systems With Delays [J]. Applied Mathematics and Mechanics, 2020, 41(8): 921-930. doi: 10.21656/1000-0887.400365
[4] ZHU Hongbao, CHEN Songlin. A Class of 2nd-Order Singularly Perturbed Time Delay Nonlinear Problems With 2 Parameters [J]. Applied Mathematics and Mechanics, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082
[5] ZHU Hongbao. A Class of Fractional Nonlinear Singularly Perturbed Problems With Time Delays [J]. Applied Mathematics and Mechanics, 2019, 40(12): 1356-1363. doi: 10.21656/1000-0887.400195
[6] YAN Huan, SONG Qian-kun, ZHAO Zhen-jiang. Global Stability of Impulsive Complex-Valued Neural Networks With Time Delay on Time Scales [J]. Applied Mathematics and Mechanics, 2015, 36(11): 1191-1203. doi: 10.3879/j.issn.1000-0887.2015.11.007
[7] XIE Ying-chao, CHENG Yan, HE Tian-yu. Global Stability of a Class of Delayed Epidemic Models With Nonlinear Incidence Rates [J]. Applied Mathematics and Mechanics, 2015, 36(10): 1107-1116. doi: 10.3879/j.issn.1000-0887.2015.10.010
[8] MO Jia-qi, WEN Zhao-hui. Singularly Perturbed Reaction Diffusion Equations With Time Delay [J]. Applied Mathematics and Mechanics, 2010, 31(6): 739-744. doi: 10.3879/j.issn.1000-0887.2010.06.011
[9] JIAO Jian-jun, CHEN Lan-sun, Juan J. Nieto, Torres Angela. Permanence and Global Attractivity of a Stage-Structured Predator-Prey Model With Continuous Harvesting on Predator and Impulsive Stocking on Prey [J]. Applied Mathematics and Mechanics, 2008, 29(5): 589-600.
[10] MENG Xin-zhu, CHEN Lan-sun, SONG Zhi-tao. Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination [J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1134.
[11] JIAO Jian-jun, CHEN Lan-sun. Delayed Stage-Structured Predator-Prey Model With Impulsive Perturbations on Predator and Chemical Control on Prey [J]. Applied Mathematics and Mechanics, 2007, 28(12): 1502-1512.
[12] ZHOU Dong-ming, CAO Jin-de, ZHANG Li-ming. Global Asymptotic Stability Conditions of Delayed Neural Networks [J]. Applied Mathematics and Mechanics, 2005, 26(3): 341-348.
[13] ZHANG Ji-ye. Global Stability Analysis in Cellular Neural Networks With Unbounded Time Delays [J]. Applied Mathematics and Mechanics, 2004, 25(6): 627-634.
[14] XIE Guang-ming, WANG Long, YE Qing-kai. Controllability of a Class of Hybrid Dynamic Systems(Ⅱ) Single Time-Delay Case [J]. Applied Mathematics and Mechanics, 2003, 24(9): 929-939.
[15] LIU An-ping, HE Meng-xing. Oscillatory Properties of the Solutions of Nonlinear Delay Hyperbolic Differential Equations of Neutral Type [J]. Applied Mathematics and Mechanics, 2002, 23(6): 604-610.
[16] PENG Qi-lin. Qualitative Analysis for a Class of Second Order Nonlinear System with Delay [J]. Applied Mathematics and Mechanics, 2001, 22(7): 749-752.
[17] PU Zhi-lin, XU Dao-yi. Global Attractivity and Global Exponential Stability for Delayed Hopfield Neural Network Models [J]. Applied Mathematics and Mechanics, 2001, 22(6): 633-638.
[18] HE Ze-rong, MA Zhi-en. The Survival Analysis for Gallopin’s System in a Polluted Environment [J]. Applied Mathematics and Mechanics, 2000, 21(8): 829-835.
[19] Yuan Cunde, Pei Yongzhen. Persistence of Two-Species Ayala Competitive Model with Different Diffusions [J]. Applied Mathematics and Mechanics, 1999, 20(4): 432-440.
[20] Zhang Xiang. Singular Perturbation of lnitial-boundary Value Problems of Reaction Diffusion Equation with Delay [J]. Applied Mathematics and Mechanics, 1994, 15(3): 253-258.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 19.6 % FULLTEXT : 19.6 % META : 79.9 % META : 79.9 % PDF : 0.6 % PDF : 0.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 3.0 % 其他 : 3.0 % China : 0.4 % China : 0.4 % Singapore : 0.3 % Singapore : 0.3 % 北京 : 2.0 % 北京 : 2.0 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.4 % 哥伦布 : 0.4 % 天津 : 0.1 % 天津 : 0.1 % 张家口 : 2.3 % 张家口 : 2.3 % 武汉 : 0.1 % 武汉 : 0.1 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 深圳 : 0.2 % 深圳 : 0.2 % 湖州 : 0.1 % 湖州 : 0.1 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 5.6 % 芒廷维尤 : 5.6 % 苏州 : 0.1 % 苏州 : 0.1 % 衢州 : 0.1 % 衢州 : 0.1 % 西宁 : 84.1 % 西宁 : 84.1 % 西安 : 0.1 % 西安 : 0.1 % 贵阳 : 0.1 % 贵阳 : 0.1 % 其他 China Singapore 北京 南宁 哥伦布 天津 张家口 武汉 洛杉矶 深圳 湖州 石家庄 芒廷维尤 苏州 衢州 西宁 西安 贵阳