Citation: | HUANG Bo. Gurtin-Type Region-Wise Variational Principles for Thermopiezoelectric Elastodynamics[J]. Applied Mathematics and Mechanics, 2003, 24(5): 512-518. |
[1] |
Eringen A C,Suhubi E S.Elastodynamics[M].New York: Academic Press,1975.
|
[2] |
Ignaczak J.A completeness problem for stress equations of motion in the linear elasticity theory[J].Arch Mech Stosowanej,1963,15(9):956-964.
|
[3] |
Gurtin M E.Variational principles for linear elastodynamics[J].Arch Rational Mach Anal,1964,16(1):34-50.
|
[4] |
Nowacki W. Some general theorems of thermopiezoelectricity[J].J Thermal Stress,1978,1(2):171-182.
|
[5] |
Nowacki W.Thermoelasticity[M].2nd Ed.Oxford: Pergamon Press, 1986.
|
[6] |
Chandrasekharaiah D S. A generalized linear thermoelasticity theory for piezoelectric media[J].Acta Mechanica,1988,71(1):39-49.
|
[7] |
Iesan D. On some theorems in thermopiezoeletricity[J].J Thermal Stress,1989,12(2):209-223.
|
[8] |
罗恩,邝君尚.压电热弹性动力学的一些基本原理[J].中国科学,A辑,1999,29(9):851-858.
|
[1] | LIU Dong-sheng, Charles H-T WANG. Variational Principle for a Special Cosserat Rod[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1091-1099. doi: 10.3879/j.issn.1000-0887.2009.09.011 |
[2] | LUO Xiao-hui, LI Yong-le, LUO Xin. Region-Wise Variational Principles and Generalized Variational Principles on Large Strain for Consolidation Theory[J]. Applied Mathematics and Mechanics, 2005, 26(7): 867-874. |
[3] | QING Guang-hui, QIU Jia-jun, LIU Yan-hong. Modified H-R Mixed Variational Principle for Magnetoelectroelastic Bodies and State-Vector Equation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 665-670. |
[4] | LUO Shao-ming, ZHANG Xiang-wei, CAI Yong-chang. The Variational Principle and Application of Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2001, 22(6): 587-592. |
[5] | HE Ji-huan. A Universal Variational Formulation for Two Dimensional Fluid Mechanics[J]. Applied Mathematics and Mechanics, 2001, 22(9): 891-897. |
[6] | Yang Lufeng, Li Guiqing. Fuzzy Stochastic Variable and Variational Principle[J]. Applied Mathematics and Mechanics, 1999, 20(7): 743-748. |
[7] | Shi Zhifei, Huang Shuping, Zhang Zimao. Variational Principles of Fluid Full-Filled Elastic Solids[J]. Applied Mathematics and Mechanics, 1999, 20(3): 249-255. |
[8] | Song Yanqi, Chen Zhida. Variational Principles of Asymmetric Elasticity Theory of Finite Deformation[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1115-1120. |
[9] | Shen Min. Variational Principles in Hydrodynamics of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 1998, 19(10): 891-896. |
[10] | Zhao Xinghua, Shi Zhanwei. A Divided Region Variational Principle of A,φ-Ω Method for 3-D Eddy Current Problems[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1049-1054. |
[11] | Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66. |
[12] | Peng Jianshe, Zhang Jingyu, Yang Jie. Formulation of a Semi-Analytical Approach Based on Gurtin Variational Principle for Dynamic Response of General Thin Plates[J]. Applied Mathematics and Mechanics, 1997, 18(11): 987-991. |
[13] | Luo Shaokai. Relativistic Variation Principles and Equation of Motionfor Variable Mass Controllable Mechanical Systems[J]. Applied Mathematics and Mechanics, 1996, 17(7): 645-653. |
[14] | Shen Min, Sun Qi-ren. Variational Principle and Generalized Variational Principle in Hydrodynamics of a Class of Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 1995, 16(4): 345-351. |
[15] | Wang Zhi-guo, Tang Li-min. Hamiltonian systems in Elasticity and Their Variational Principles[J]. Applied Mathematics and Mechanics, 1995, 16(2): 117-122. |
[16] | Gao Hang-shan, Zhang Ru-qing. The Random Variational Principle in Finite Deformation of Elasticity and Finite Element Method[J]. Applied Mathematics and Mechanics, 1994, 15(10): 855-862. |
[17] | Jin Fu-sheng. Variational Principles for Hydrodynamic Impact Problems[J]. Applied Mathematics and Mechanics, 1992, 13(6): 543-552. |
[18] | Zhang Ru-qing. Elastic Dynamics Variational Principle for Nonlinear Elastic Body[J]. Applied Mathematics and Mechanics, 1992, 13(1): 1-9. |
[19] | Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810. |
[20] | Pi Dao-hua, Jin Li-hua. Structural Function Theory of Generalized Variational Principles for Linear Elastic Materials with Voids[J]. Applied Mathematics and Mechanics, 1991, 12(6): 531-540. |