Wang Biao, Wang Dian-fu, Wang Duo. Elastic Media with Randomly Distributed Defects[J]. Applied Mathematics and Mechanics, 1989, 10(11): 997-1008.
Citation: YANG ling, LIU Zeng-rong, MAO Jian-min. Controlling Hyperchaos in Planar Systems by Adjusting Parameters[J]. Applied Mathematics and Mechanics, 2003, 24(4): 351-356.

Controlling Hyperchaos in Planar Systems by Adjusting Parameters

  • Received Date: 2001-09-25
  • Rev Recd Date: 2002-11-29
  • Publish Date: 2003-04-15
  • For the two-parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hypetvhaos is introduced. It works by acjjusting the two parameters in each iteration of the map. The explicit expressions for the parameter a}ustments are derived,and strict proof of convergence for method is given.
  • [1]
    Ott E,Grebogi C,Yorke J A.Controlling Chaos[J].Phys Rev Lett,1990,64(11):1196-1199.
    [2]
    Ditto W L,Rauseo S N,Spano M L.Experimental control of chaos[J].Phys Rev Lett,1990,65(26):3211-3214.
    [3]
    Singer J,Wang Y-Z,Bau H H.Controlling a chaotic system[J].Phys Rev Lett,1991,66(9):1123-1125.
    [4]
    Auerbach D,Grebogi C,Ott E,et al.Controlling chaos in high dimensional systems[J].Phys Rev Lett,1992,69(24):3479-3482.
    [5]
    Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys Lett A,1992,176(6):421-428.
    [6]
    Petrov V,Peng B,Showalter K.A map-based algorithm for controlling tow-dimensional chaos[J].J Phys Chem,1992,96(5):7506-7513.
    [7]
    Romeiras F J,Grebogi C,Ott E,et al.Controlling chaotic dynamic systems[J].Phys D,1992,58(2):165-192.
    [8]
    杨凌,刘曾荣.OGY方法的改进及证明[J].应用数学和力学,1998,19(1):1-7.
    [9]
    Shinbrot T,Ott E,Grebogi C,et al.Using chaos to direct trajectories to targets[J].Phys Rev Lett,1990,65(26):3215-3218.
    [10]
    Shinbrot T,Grebogi C,Ott E,et al.Using chaos to target stationary states for flows[J].Phys Lett A,1992,169(3):349-354.
    [11]
    Shinbrot T,Ott E,Grebogi C,et al.Using chaos to direct orbits to targets in systems described by a one-dimensional map[J].Phys Rev A,1992,45(6):4165-4168.
    [12]
    Paskota M,Mees A I,Teo K L.Directing orbits of chaotic dynamical systems[J].Int J Bifur Chaos,1995,5(2):573-583.
    [13]
    Yang L,Liu Z,Mao J.Controlling hyperchaos[J].Phys Rev Lett,2000,84(1):67-70.
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.1 %FULLTEXT: 15.1 %META: 84.1 %META: 84.1 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %China: 0.6 %China: 0.6 %Seattle: 0.1 %Seattle: 0.1 %Singapore: 0.1 %Singapore: 0.1 %上海: 0.9 %上海: 0.9 %北京: 2.5 %北京: 2.5 %十堰: 0.2 %十堰: 0.2 %南宁: 0.1 %南宁: 0.1 %宣城: 0.1 %宣城: 0.1 %张家口: 2.2 %张家口: 2.2 %徐州: 0.1 %徐州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.5 %洛杉矶: 0.5 %深圳: 0.2 %深圳: 0.2 %漯河: 0.8 %漯河: 0.8 %石家庄: 0.1 %石家庄: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 7.6 %芒廷维尤: 7.6 %芜湖: 0.1 %芜湖: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 73.9 %西宁: 73.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %其他ChinaSeattleSingapore上海北京十堰南宁宣城张家口徐州成都扬州武汉洛杉矶深圳漯河石家庄绵阳芒廷维尤芜湖苏州衢州西宁西安贵阳郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2369) PDF downloads(490) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return