LUO Zhen-dong, ZHU Jiang. A Nonlinear Galerkin Mixed Element Method and a Posteriori Error Estimator for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1061-1072.
Citation: LUO Zhen-dong, ZHU Jiang. A Nonlinear Galerkin Mixed Element Method and a Posteriori Error Estimator for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1061-1072.

A Nonlinear Galerkin Mixed Element Method and a Posteriori Error Estimator for the Stationary Navier-Stokes Equations

  • Received Date: 2000-08-30
  • Rev Recd Date: 2002-04-01
  • Publish Date: 2002-10-15
  • A nonlinear Galerkin mixed element(NGME) method and a posteriori error estimator based on the method are established for the stationary Navier-Stokes equations. The esistence and error estimates of the NGME solution are first discussed,and then a posteriori error estimator based on the NGME method is derived.
  • loading
  • [1]
    Foias C,Manley O P,Temam R. Modellization of the interaction of small and large eddies in two dimensional turbulent flows[J]. Math Mod Numer Anal,1988,22(1):93-114.
    [2]
    Marion M,Temam R. Nonlinear Galerkin methods[J]. SIAM J Numer Anal,1989,2(5):1139-1157.
    [3]
    Foias C,Jolly M,Kevrekidis I G,et al. Dissipativy of numerical schemes[J]. Nonlinearity,1991,4(4):591-613.
    [4]
    Devulder C,Marion M,Titi E. On the rate of convergence of nonlinear Galerkin methods[J]. Math Comp,1992,59(200):173-201.
    [5]
    Marion M,Temam R. Nonlinear Galerkin methods:the finite elements case[J]. Numer Math,1990,57(3):205-226.
    [6]
    Marion M,Xu J C. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[J]. SIAM J Numer Anal,1995,32(4):1170-1184.
    [7]
    Ait Ou Ammi A,Marion M. Nonlinear Galerkin methods and mixed finite element:two-grid algorithms for the Navier-Stokes equations[J]. Numer Math,1994,68(2):189-213.
    [8]
    Li K T,Zhou L. Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations[J]. Math Numer Sinica,1995,17(4):360-380.
    [9]
    He Y,Li K T. Nonlinear Galerkin method and two-step method for the Navier-Stokes equations[J]. Inc Numer Methods P D Eq,1996,12(3):283-305.
    [10]
    Luo Z D,Wang L H. Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(Ⅰ):The continuous-time case[J]. Chinese J Numer Math Appl,1998,20(4):71-94.
    [11]
    Luo Z D,Wang L H. Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(Ⅱ):The backward one-step Euler fully discrete format[J]. Chinese J Numer Math Appl,1999,21(1):86-105.
    [12]
    罗振东,朱江,王会军. 定常的Navier-Stokes方程的非线性Galerkin/Petrov最小二乘混合元法[J]. 应用数学和力学,2002,23(7):697-708.
    [13]
    Li G C,He Y N. Convergence of nonlinear Galerkin finite element algorithm for the steady incompressible equations of the Navier-Stokes type[J]. Chinese J Comput Phys,1997,14(1):83-89.
    [14]
    Bank R E,Welfert B. A posteriori error estimates for the Stokes equations:A comparison[J]. Comput Methods Appl Mech Engrg,1990,82(3):323-340.
    [15]
    Bank R E,Welfert B. A posteriori error estimates for the Stokes problems[J]. SIAM J Numer Anal,1991,28(3):591-623.
    [16]
    Oden J T,Demkowicz L. h-p adaptive finite element methods in computational fluid dynamics[J]. Comput Methods Appl Mech Engrg,1991,89(1):11-40.
    [17]
    Padra C,Buscaglia G C,Dari E A. Adaptivity in steady incompressible Navier-Stokes equations using discontinuous pressure interpolates[A]. In:H Alder,J C Heinrich,S Lavanchy,et al Eds. Num Meth Eng Appl Sci,Part Ⅰ[C]. Barcelona:CIMNE,1992,267-276.
    [18]
    Wu J,Zhu J Z,Szmelter J,et al. Error estimation and adaptivity in Navier-Stokes incompressible flows[J]. Comput Mech,1990,6(2):259-270.
    [19]
    Verfürth R. A posteriori error estimators for the Stokes equations[J]. Numer Math,1989,55(3):309-325.
    [20]
    Verfürth R. A posteriori error estimators and adaptive mesh-refinement techniques for the Navier-Stokes equations[A]. In:M Gunzburger,R A Nicolaides Eds. Incompressible Computational Fluid Dynamics,Trends and Advances[C]. Cambridge:Cambridge University Press,1993,447-477.
    [21]
    Verfürth R. A posteriori error estimates for non-linear problems:Finite element discretizations of elliptic equations[J]. Math Comp,1994,62(206):445-475.
    [22]
    Oden J T,Wu W,Ainsworth M. An a posteriori error estimate for finite element approximations of the Navier-Stokes equations[J]. Comput Methods Appl Mech Engrg,1994,111(2):185-220.
    [23]
    Arnica D,Padra C. A posteriori error estimators for steady incompressible Navier-Stokes equations[J]. Inc Numer Methods P D Eq,1997,13(5):561-574.
    [24]
    Ervin V,Layton W,Maubach J. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J]. Inc Numer Methods P D Eq,1996,12(3):333-346.
    [25]
    Girault V,Raviart P A. Finite Element Approximations of the Navier-Stokes Equations,Theorem and Algorithms[M]. New York:Springer-Verlag,1986.
    [26]
    Temam R. Navier-Stokes Equations[M]. Amsterdam:North-Holland,1984.
    [27]
    Bernardi C,Raugel B. Analysis of some finite elements for the Stokes problem[J]. Math Comp,1985,44(169):71-79.
    [28]
    罗振东. 有限元混合法理论基础及其应用,发展与应用[M]. 济南:山东教育出版社,1996.
    [29]
    Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam:North-Holland,1978.
    [30]
    Luo Z D. The third order estimate of mixed finite element for the Navier-Stokes problems[J]. Chinese Quart J Math,1995,10(3):9-12.
    [31]
    Clément P. Approximation by finite element function using local regularization[J]. RAIRO,1975,R-2(1):77-84.
    [32]
    Layton W. A two level discretization method for the Navier-Stokes equations[J]. Comput Math Appl,1993,26(1):33-45.
    [33]
    Brezzi F,Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York:Berlin,Heidelberg:Springer-Verlag,1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2649) PDF downloads(721) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return