WANG Xin-zhi, ZHAO Yong-gang, YEH Kai-yuan, HUANG Da-wen. Unsymmetrical Large Deformation Problem of Orthotropic Plates[J]. Applied Mathematics and Mechanics, 2002, 23(9): 881-888.
Citation: WANG Xin-zhi, ZHAO Yong-gang, YEH Kai-yuan, HUANG Da-wen. Unsymmetrical Large Deformation Problem of Orthotropic Plates[J]. Applied Mathematics and Mechanics, 2002, 23(9): 881-888.

Unsymmetrical Large Deformation Problem of Orthotropic Plates

  • Received Date: 2001-04-03
  • Rev Recd Date: 2001-11-28
  • Publish Date: 2002-09-15
  • Based upon the theory of anisotropic plates, the unsymmetrical large deformation equations of orthotropic circular plates were derived. By using Fourier series, the partial differential equations of this problem can be transformed into sets of non-linear differential equations. And the procedure to solve the problem using the iterative method is given.
  • loading
  • [1]
    刘人怀.夹层圆板的非线性弯曲[J].应用数学和力学,1981,2(2):173-190.
    [2]
    刘人怀,施云方.夹层圆板大挠度问题的精确解[J].应用数学和力学,1982,3(1):11-24.
    [3]
    王震鸣,刘国玺,吕明身.各向异性多层扁壳的大挠度方程[J].应用数学和力学,1982,3(1):49-65.
    [4]
    Chia C Y.Geometrically nonlinear behavior of composite plates[J].A Review Appl Mech,1988,41(12):439-451.
    [5]
    尹帮信.复合材料多层板壳大挠度非线性问题的迭代解[J].应用数学和力学,1999,20(7):721-728.
    [6]
    王新志,王林祥,徐鉴.圆薄板非对称问题[J].科学通报,1989,34(16):83-85.
    [7]
    王新志,王林祥,洪小波,等.圆薄板非轴对称大变形的位移解[J].自然科学进展,1993,3(2):133-144.
    [8]
    王新志,任冬云,王林祥,等.扁薄球壳非对称大变形问题[J].应用数学和力学,1996,17(8):667-684.
    [9]
    叶开沅,刘人怀,李思来.在对称线布载荷作用下圆底扁薄球壳的非线性稳定问题[J].兰州大学学报(自然科学),1965,18(2):10-33.
    [10]
    YEH Kai-yuan,WANG Xin-zhi.Modified iteration method in the problem of large deflection of thin circular plates with nonuniform thickness[A].In:Chien Wei-zang Ed.ICNM-I[C].Shanghai:Science Press,1985,398-403.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2468) PDF downloads(803) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return