ZHAO Kai, WANG Mei, WANG Chun-jie. A Weighted Norm Inequality for Thela(t)-Type Oscillatory Singular Integrals[J]. Applied Mathematics and Mechanics, 2002, 23(9): 987-990.
Citation: ZHAO Kai, WANG Mei, WANG Chun-jie. A Weighted Norm Inequality for Thela(t)-Type Oscillatory Singular Integrals[J]. Applied Mathematics and Mechanics, 2002, 23(9): 987-990.

A Weighted Norm Inequality for Thela(t)-Type Oscillatory Singular Integrals

  • Received Date: 1999-05-20
  • Rev Recd Date: 2002-05-16
  • Publish Date: 2002-09-15
  • The theta(t)-type oscillatory singular integral operators has been discussed. With the non-negative Locally integrable weighted funciton, the weighted norm inequalityof theta(t)-type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.
  • loading
  • [1]
    Ricci F,Stein E M.Harmonic analysis on nilpotent groups and singular integral Ⅰ:Oscillatory Integrals[J].J Funct Anal,1987,73(1):179-194.
    [2]
    陆善镇,张严.一类振荡积分算子的加权模不等式[J].科学通报,1991,36(13):961-964.
    [3]
    HU Guo-en.A weighted norm inequality for oscillatory singular integrals[J].Adv in Math(China),1997,26(2):133-138.
    [4]
    赵凯.一类奇异积分算子的加权模不等式[J].青岛大学学报,1993,6(1):52-55.
    [5]
    赵凯.广义Calderón-Zygmund算子的一个权模不等式[J].青岛大学学报,1998,11(2):5-10.
    [6]
    Pérez C.Weighted norm inequalities for singular integral operators[J].J London Math Soc,1994,49(1):296-308.
    [7]
    Garcia-Cuerva J,Rubio de Francia J L.Weightednorm Inequalities and Related Topics[M].North-Holland Amsterdan,North-Holland Math Studies,,1985.
    [8]
    Fefferman C,Stein E M.Some maximal inequalities[J].Amer J Math,1971,93(1):107-115.
    [9]
    ZHAO Kai.On generalized calderón-Zygmund operators[J].J Math Research & Exposition,1995,15(2):211-215.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2407) PDF downloads(702) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return