TIAN Li-xin, XU Gang, LIU Zeng-rong. The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2002, 23(5): 497-506.
Citation: TIAN Li-xin, XU Gang, LIU Zeng-rong. The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2002, 23(5): 497-506.

The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation

  • Received Date: 2001-08-20
  • Rev Recd Date: 2001-11-28
  • Publish Date: 2002-05-15
  • The traveling wave soliton solutions and pair soliton solution to a class of new completely integralbe shallow water equation,Camassa-Holm equation are studied.The concept of concave or convex peaked soliton and smooth soliton were introduced.And the research shows that the traveling wave solution of that equation possesses concave and convex peaked soliton and smooth soliton solutions with the peakson.Simultaneously by applying Backlund transformation the new pair soliton solutions to this class of equation are given.
  • loading
  • [1]
    Roberto Camassa,Darryl D Holm.An integrable shallow water equation with peaked solitons[J].Phy Rev Letters,1993,71(13):1661-1664.
    [2]
    Alber M S,Camassa R.The geometry of peaked soliton and billiard solutions of a class of integrable PDE's[J].Letters Math Phy,1994,32(2):137-151.
    [3]
    Clarkson P A,Mansfield E L,Priestley T J.Symmetries of a class of nonlinear third-order partial differential equations[J].Math Comput Modelling,1997,25(8/9):195-212.
    [4]
    XIN Zhou-ping,ZHANG Ping.On the weak solutions to a shallow water equation[J].Comm Pure Appli Math,2000,53(9):1411-1433.
    [5]
    Michael Fisher,Jeremy Schiff.The camassa Holm equation:Conserved quantities and the initial value problem[J].Phy Lett A,1999,259(3):371-376.
    [6]
    Adrian Constantin,Waner A Atrauss.Stability of peakons[J].Comm Pure Appli Math,2000,53(10):603-610.
    [7]
    Adrian Constantin,Joachim Escher.Well-posedness,global existence and blown up phenomena for a periodic quasi-linear hyperbolic equation[J].1998,51(5):475-504.
    [8]
    TIAN Li-xin.Wavelet approximate inertial manifold in nonlinear solitary wave equation[J].J Math Phy,2000,41(8):5773-5793.
    [9]
    TIAN Li-xin,LIU Zeng-rong.P dissipative operator[J].Comm Math Phy,1999,201(3):509-538.
    [10]
    TIAN Li-xin,LIU Zeng-rong.The Schrdinger operator[J].Proc Amer Math Soc,1998,126(1):201-211.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2751) PDF downloads(737) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return