CHEN Li-qun. Chaos in Perturbed Planan Non-Hamiltonian Integrable Systems with Slowly-Varying Angle Parameters[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1172-1176.
Citation: CHEN Li-qun. Chaos in Perturbed Planan Non-Hamiltonian Integrable Systems with Slowly-Varying Angle Parameters[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1172-1176.

Chaos in Perturbed Planan Non-Hamiltonian Integrable Systems with Slowly-Varying Angle Parameters

  • Received Date: 2000-07-19
  • Rev Recd Date: 2001-04-08
  • Publish Date: 2001-11-15
  • The Melnikov method was extended to perturbed planan non-Hamiltonian integrable systems with slowly-varying angle parameters.Based on the analysis of the geometric structure of unperturbed systems,the condition of transversely homoclinic intersection was established.The generalized Melnikov function of the perturbed system was presented by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.Chaos may occur in the system if the generalized Melnikov function has simple zeros.
  • loading
  • [1]
    刘曾荣. 混沌研究中Melnikov的方法[A]. 见:郭仲衡编. 近代数学和力学[C]. 北京: 北京大学出版社,1987,269-290.
    [2]
    Wiggins S. Global Bifurcations and Chaos[M]. Berlin: Springer-Verlag,1988.
    [3]
    Holmes P J. Averaging and chaotic motions in forced oscillations[J]. SIAM J Appl Math,1980,38(1):65-80;1980,40(1):167-168.
    [4]
    蒋继发,刘曾荣. 非Hamilton系统的次谐分叉和马蹄[J]. 应用数学学报,1987,10(4):504-508.
    [5]
    陈立群,刘延柱. 准周期摄动平面非Hamilton可积系统中的混沌[J]. 上海交通大学学报,1996,30(11):28-31.
    [6]
    陈立群. 科学中混沌概念的演化[J]. 自然杂志,1991,14(7):619-624.
    [7]
    Wiggins S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems[M]. Berlin: Springer-Verlag,1994.
    [8]
    Hale J. Ordinary Differential Equations[M]. London: Robert E Krieger,1980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2306) PDF downloads(577) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return