PENG Qi-lin. Qualitative Analysis for a Class of Second Order Nonlinear System with Delay[J]. Applied Mathematics and Mechanics, 2001, 22(7): 749-752.
Citation: PENG Qi-lin. Qualitative Analysis for a Class of Second Order Nonlinear System with Delay[J]. Applied Mathematics and Mechanics, 2001, 22(7): 749-752.

Qualitative Analysis for a Class of Second Order Nonlinear System with Delay

  • Received Date: 1999-12-21
  • Rev Recd Date: 2001-01-08
  • Publish Date: 2001-07-15
  • The second order nonlinear system with delay x"(t)+f(x(t),x'(t))+g(x(t),x'(t))ψ(x(t-τ))=p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solutions, the existence of the periodic solutions, the existence and uniqueness of the stationary oscilation are obtained by means of the Liapunov's second method. The conclusion in the literatures are generalized.
  • loading
  • [1]
    赵杰民,黄克累,陆启韶.一类泛函微分方程周期解的存在性与应用[J].应用数学和力学,1995,15(1):49-58.
    [2]
    Burton T A.Stability and Periodic Solutions of Ordinary and Functional Differential Equations[M].Orlando:Academic Press,1985.
    [3]
    徐道义.具有滞后的变系数系统的稳定性[J].应用数学学报,1989,12(1):124-128.
    [4]
    Edmund Pinney.Ordinary Difference-Differential Equations[M].Los Angeles:University of California Press,1958.
    [5]
    彭奇林.一类二阶非线性系统的定性分析[J].吉林化工学院学报,1999,16(增刊):131-133.
    [6]
    Burton T A,Mohfouf W E.Stability criteria for Volterra equations[J].Trans Amer Math Soc,1983,270(1):143-174.
    [7]
    秦元勋,王慕秋,王联.运动稳定性理论与应用[M].北京:科学出版社,1981.
    [8]
    王联,王慕秋.非线性微分方程定性分析[M].哈尔滨:哈尔滨工业大学出版社,1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2449) PDF downloads(646) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return