J. M. Soriano. Fredholm and Compact Mappings Sharing a Value[J]. Applied Mathematics and Mechanics, 2001, 22(6): 609-612.
Citation: J. M. Soriano. Fredholm and Compact Mappings Sharing a Value[J]. Applied Mathematics and Mechanics, 2001, 22(6): 609-612.

Fredholm and Compact Mappings Sharing a Value

  • Received Date: 2000-11-22
  • Publish Date: 2001-06-15
  • Sufficient conditions are given to assert that two differentiable mappings between Banach spaces have common values.The proof is essentially based upon continuation methods.
  • loading
  • [1]
    Allgower E L, Georg K. Numerical Cont inuation Method[M]. Springer Series in Computational Mathematics 13.New York: Springer-Verlag,1990.
    [2]
    Allgower E, Clashoff K, Peitgen H. A Survey of Homotopy Methods for Smooth Mappings[M]. Berlin: Springer-Verlag,1981,2-29.
    [3]
    Allgower E, Glashoff K, Peitgen H. A survey of homotopy methods for smooth mappings[A]. In: Proceedings of the Conference on Numerical Solutions of Nonlinear Equations[C]. Bremen, July,1980,Lecture Notes in Math[M]. 878.Berlin: Springer-Verlag,1981,1-29.
    [4]
    Alexander J C, York J A. Homotopy continuation methods: numerically implementable topological procedures[J]. Trans Amer Math Soc,1978,242:271-284.
    [5]
    Bernstein S. Surla generalisation du problème de Dirichlet Ⅰ[J]. Math Anal,1906,62:253-270.
    [6]
    Bernstein S. Surla generalisation duproblème de Dirichlet Ⅱ[J]. Math Anal,1910,69:82-136.
    [7]
    Leray J, Shauder J. Topologie et equations of fonctionalle s[J]. Ann Sci Ecole Norm Sup,1934,51:45-78.
    [8]
    Garcia C B, Li. On the number of solutions to polynomial systems of nonlinear equations[J]. SIAM J Numer Anal,1980,17:540-546.
    [9]
    Garcia C B, Zangwill W I. Determining all solutions to certain systems of nonlinear equations[J]. Math Oper Res,1979,4:1-14.
    [10]
    Zeidler E. Nonlinear Functional Analysis and Its Applications [M]. New York: Springer-Verlag,1985.
    [11]
    Soriano J M. Global minimum point of a convex function[J]. Appl Math Comput,1993,55(2-3):213-218.
    [12]
    Soriano J M. Extremum points of a convex function[J]. Appl Math Comput,1994,66:261-266.
    [13]
    Soriano J M. On the existence of zero points[J]. Appl Math Comput,1996,79:99-104.
    [14]
    Soriano J M. On the number of zeros of a mapping[J]. Appl Math Comput,1997,88:287-291.
    [15]
    Soriano J M. Existence of zeros for bounded perturbations of prop er mappings[J]. Appl Math Comput,1999,99:255-259.
    [16]
    Soriano J M. Mappings sharing a value on finite-dimensional spaces[J]. Appl Math Comput,(pending publication)
    [17]
    Soriano J M. On the Bezout theorem real case[J]. Appl Nonlinear Anal,1995,2(4):59-66.
    [18]
    Soriano J M. On the Bezout theorem[J]. Commun Nonlinear Anal,1997,4(2):59-66.
    [19]
    Soriano J M. Zeros of compact perturbations of proper mappings[J]. Appl Nonlinear Anal,2000,7(4):31-37.
    [20]
    Soriano J M. Compact mappings and proper mappings between Banach spaces which share a value[J]. Math Balkanica,2000,14(1) (2).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2145) PDF downloads(779) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return