ZHONG Wan-xie, CAI Zhi-qin. Precise Integration Method for LQG Optimal Measurement Feedback Control Problem[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1279-1284.
Citation: ZHONG Wan-xie, CAI Zhi-qin. Precise Integration Method for LQG Optimal Measurement Feedback Control Problem[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1279-1284.

Precise Integration Method for LQG Optimal Measurement Feedback Control Problem

  • Received Date: 2000-02-22
  • Publish Date: 2000-12-15
  • By using the precise integration method,the numerical solution of linear quadratic Gaussian(LQG)optimal control problem was discussed.Based on the separation principle,the LQG control problem decomposes,or separates,into an optimal state-feedback control problem and an optimal state estimation problem.That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation,but also can be used to solve the estimated state from the time-variant differential equations.The high precision of precise integration is of advantage for the control and estimation.Numerical examples demonstrate the high precision and effectiveness of the algorithm.
  • loading
  • [1]
    郑大钟. 线性系统理论[M].北京:清华大学出版社,1990.
    [2]
    Green M, Limebeer D J N. Linear Robust Control[M]. Prentice-Hall,1995.
    [3]
    Meirovitch L. Dynamic and Control of Structures[M]. J Wiley & Sons,1990.
    [4]
    Doyal J C, Glover K, Khargoneker P P, et al. State space solutions to standard H2 and H control problems[J]. IEEE Trans Automat Control,1989,34(8):831-847.
    [5]
    申铁龙. H 控制理论及应用[M]. 北京:清华大学出版社,1996.
    [6]
    钟万勰,等. 计算结构力学与最优控制[M]. 大连:大连理工大学出版社,1993.
    [7]
    钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社,1995.
    [8]
    钟万勰. 矩阵黎卡提方程的精细积分法[J]. 计算结构力学及其应用,1994,11(2):113-119.
    [9]
    钟万勰. 线性二次最优控制的精细积分法[J]. 自动化学报,2000,26(5).
    [10]
    钟万勰. 卡尔曼-布西滤波的精细积分[J]. 大连理工大学学报,1999, 39(2):191-200.
    [11]
    陆恺,田蔚风. 最优估计理论及其在导航中应用[M]. 上海:上海交通大学出版社,1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2422) PDF downloads(909) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return