By using the precise integration method,the numerical solution of linear quadratic Gaussian(LQG)optimal control problem was discussed.Based on the separation principle,the LQG control problem decomposes,or separates,into an optimal state-feedback control problem and an optimal state estimation problem.That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation,but also can be used to solve the estimated state from the time-variant differential equations.The high precision of precise integration is of advantage for the control and estimation.Numerical examples demonstrate the high precision and effectiveness of the algorithm.
Green M, Limebeer D J N. Linear Robust Control[M]. Prentice-Hall,1995.
[3]
Meirovitch L. Dynamic and Control of Structures[M]. J Wiley & Sons,1990.
[4]
Doyal J C, Glover K, Khargoneker P P, et al. State space solutions to standard H2 and H∞ control problems[J]. IEEE Trans Automat Control,1989,34(8):831-847.