DING Xie-ping, ZHANG Hong-lin. Iterative Process to φ-Hemicontractive Operator and φ-Strongly Accretive Operator Equations[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1133-1139.
Citation: DING Xie-ping, ZHANG Hong-lin. Iterative Process to φ-Hemicontractive Operator and φ-Strongly Accretive Operator Equations[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1133-1139.

Iterative Process to φ-Hemicontractive Operator and φ-Strongly Accretive Operator Equations

  • Received Date: 1999-06-21
  • Rev Recd Date: 2000-09-20
  • Publish Date: 2000-11-15
  • Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E.Let T:K→K be a uniformly continuous φ-hemicontractive operator with bounded range and {an},{bn},{cn},{a'n},{b'n},{c'n}be sequences in[0,1] satisfying:ⅰ)an+bn+cn=a'n+b'n+c'n=1,∀n≥0; For any given x0,u0,v0∈K,define the Ishikawa type iterative sequence {xn} as follows: where {un} and {vn} are bounded sequences in K.Then {xn} converges strongly to the unique fixed point of T.Related result deals with the convergence of Ishikawa type iterative sequence to the solution of φ-strongly accretive operator equations.
  • loading
  • [1]
    Osilike M O.Iterative solution of nonlinear equations of φ-strongly accretive type[J].J Math Anal Appl,1996,200(2):259-271.
    [2]
    Chidume C E,Osilike M O.Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces[J].Numer Func Anal Optim,1994,15(4):779-790.
    [3]
    Deimling K.N onlinear Functional Analysis[M].Berlin:Springer-Verlag,1985.
    [4]
    Deng L,DING Xie-ping.Iterative approximation of Lipschitz strictly pseudo-contractive mappings in uniformly smooth Banach spaces[J].Nonlinear Anal,1995,24(7):981-987.
    [5]
    DING Xie-ping.Iterative process with errors to locally strictly pseudocontractive maps in Banach spaces[J].Computers Math Applic,1996,32(10):91-97.
    [6]
    DING Xie-ping.Iterative process with errors to nonlinear φ-strongly accretive operator equations in arbitrary Banach spaces[J].Computers Math Applic,1997,33(8):75-82.
    [7]
    DING Xie-ping.Iteration process with errors to nonlinear equations in arbitrary Banach spaces[J].Acta Math Sinica,New Series,1998,14(supplement):577-584.
    [8]
    Osilike M O.Stability of the Mann and Ishikawa iteration processes for φ-strongly pseudocontractions and nonlinear equations of φstrongly accretive type[J].J Math Anal Appl,1998,227(2):319-334.
    [9]
    Huang Z Y.Approximating fixed points of φ-hemicontractive mappings by the Ishikawa iteration process with errors in uniformly smooth Banach spaces[J].Computer s Math Applic,1998,36(2):13-21.
    [10]
    Osilike M O.Iterative solutions of nonlinear φ-strongly accretive operat or equations in arbitrary Banach spaces[J].Nonlinear An al,1999,36(1):1-9.
    [11]
    Xu Y G.Iskikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations[J].J Math Anal Appl,1998,224(1):91-101.
    [12]
    Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive maps[J].J Math Anal Appl,1998,228(2):254-264.
    [13]
    周海云.Banach空间中含强增生算子的非线性方程的迭代解[J].应用数学和力学,1999,20(3):269-276.
    [14]
    Chang S S.On Chidume.s open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces[J].J Math Anal Appl,1997,216(1):94-111.
    [15]
    Weng X L.Fixed point iteration for local strictly pseudo-contractive mapping[J].Proc Amer Math Soc,1991,113(3):727-731.
    [16]
    Chidume C E,Moore G.The solution by iteration of nonlinear equations in uniformly smooth Banach spaces[J].J Math Ana l Appl,1997,215(1):132-146.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2320) PDF downloads(827) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return