Citation: | MA Shi-wang, WANG Zhi-cheng, YU Jian-she. The Existence of Periodic Solutions for Nonlinear Systems of First-Order Differential Equations at Resonance[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1156-1164. |
[1] |
Hale J K.Ordinary Differential Equations[M].New York:Wiley Interscience,1969.
|
[2] |
Nagle R K.Nonlinear boundary value problems for ordinary differential equations with a small parameter[J].SIAM J Math Analysis,1978,9(3):719-729.
|
[3] |
Mawhin J.Landesman-Lazter.stype problems for nonlinear equations[A].In:Conferenze Seminario Matematica[M].DiBari:Dell Universita,1977,147.
|
[4] |
Fucik S.Solva bility of Nonlinear Equations and Boundary Value Problems[M].Dordrecht,Holland:D.Reidel Publishing,1980.
|
[5] |
Nagle R K,Sinkala Z.Existence of 2π-periodic solutions for nonlinear systems of first-order ordinary differential equations at resonance[J].Nonlinear Analysis(TMA),1995,25(1):1-16.
|
[6] |
MA Shi-wang,WANG Zhi-cheng,YU Jian-she.Coincidence degree and periodic solutions of Duffing equations[J].Nonlin ear Analysis(TMA),1998,34(2):443-460.
|
[7] |
Lazer A C,Leach D E.Bounded perturbations of forced harmonic oscillations at resonance[J],Ann Mat Pura Appl,1969,82(1):49-68.
|
[8] |
Schuur J D.Perturbation at resonance for a fourth order ordinary differential equation[J].J Math Anal Appl,1978,65(1):20-25.
|
[9] |
丁同仁.共振点的非线性振动[J].中国科学(A辑),1982,(1):1-13.
|
[10] |
HAO Dun-yuan,MA Shi-wang.Semilinear Duffing equations crossing resonance points[J].J Differential Equations,1997,133(1):98-116.
|
[11] |
Mawhin J.Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mapping in locally convex topological vector spaces[J].J Differential Equations,1972,12(2):610-636.
|
[12] |
Mawhin J.Topolo gical Degree Methods in Nonlinear Boundary Value Problems CBMS[M].Providence RI:Amer Math Soc,1979,40.
|
[13] |
Deimling K.N onlinear Functional Analysis[M].New York:Springer-Verlag,1985.
|