Pan Jia-qing. The Second Initial-Boundary Value Problem for a Quasilinear Prabolic Equations With Nonlinear Boundary Conditions[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1201-1207.
Citation: Pan Jia-qing. The Second Initial-Boundary Value Problem for a Quasilinear Prabolic Equations With Nonlinear Boundary Conditions[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1201-1207.

The Second Initial-Boundary Value Problem for a Quasilinear Prabolic Equations With Nonlinear Boundary Conditions

  • Received Date: 1999-02-18
  • Rev Recd Date: 2000-05-28
  • Publish Date: 2000-11-15
  • With prior estimate method,the existence,uniqueness,stability and large time behavior of the solution of second initial-boundary value problem for a fast diffusion equation with nonlinear boundary conditions are investigated.The main results are:1) there exists only one global weak solution which continuously depends on initial value; 2) when t<T0,the solution is infinitely continuously differentiable and is a classical solution; 3) the solution converges to zero uniformly as t is large enough.
  • loading
  • [1]
    Esteban J R,Rodriguez A,Vazquez J L.A nonlinear heat equation with singular diffursivity[J].Commun In Patial Differential Equations,1988,13(8):895-1039.
    [2]
    潘佳庆.非线性奇异扩散方程解的存在性与唯一性[J].数学学报,1999,42(3):537-544.
    [3]
    潘佳庆,白宣怀.具奇扩散的非线性热方程的Cauchy问题[J].数学物理学报,1992,12 增刊:117-118.
    [4]
    王明新.一类带有非线性边界条件的拟线性抛物形方程的大时间性态[J].数学学报,1996,39(1):118-124.
    [5]
    Ladyzenskaa O A,Solonnikov V A,Uralceva N N.Linear and quasilinear equations of parabolic type[J].Trnasl Math Monogra phs.Providence R I:Amer Math Soc,1968,23:475-492.
    [6]
    Gilding B H,Peletier L A.The Cauchy problem for an equation in the theory of infiltration[J].Arch Rat Mech Anal,1976,61(2):127-140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2300) PDF downloads(616) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return