CHEN Li-qun, CHENG Chang-jun. Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material[J]. Applied Mathematics and Mechanics, 2000, 21(9): 890-896.
Citation: CHEN Li-qun, CHENG Chang-jun. Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material[J]. Applied Mathematics and Mechanics, 2000, 21(9): 890-896.

Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material

  • Received Date: 1999-06-25
  • Rev Recd Date: 2000-05-25
  • Publish Date: 2000-09-15
  • The dynamical stability of a homogeneous,simple supported column,subjected to a periodic axial force,is investigated.The viscoelastic material is assumed to obey the Leaderman nonlinear constitutive ralation.The equation of motion was derived as a nonlinear integro-partial-differential equation,and was simplified into a nonlinear integro-differential equation by the Galerkin method. The averaging method was employed to carry out the stability analysis.Numerical results are presented to compare with the analytical ones.Numerical results also indicate that chaotic motion appears.
  • loading
  • [1]
    Matyash V I. Dynamic stability of hinged viscoelastic bar[J]. Mech Poly,1964,2(3):293-300.
    [2]
    Stevens K K. On the parametric excitation of a viscoelastic column[J]. AIAA J,1966,12(10):2111-2116.
    [3]
    Szyskowski W, Gluckner P G. The stability of viscoelastic perfect columns: a dynamic approach[J]. Int J Solids Struct,1985,6(4):545-559.
    [4]
    Gluckner P G, Szyskowski W. On the stability of column made of time dependent materials[J]. Encyc Civ Eng Prac Tech,1987,23(4):577-626.
    [5]
    Cederbaum G, Mond M. Stability properties of a viscoelastic column under a periodic force[J]. J Appl Mech,1992,59(1):16-19.
    [6]
    Suire G, Cederbaum G. Elastica type dynamic stability analysis of viscoelastic columns[J]. Arch Appl Mech,1994,64(3):307-316.
    [7]
    Smart J, Williams J G. A comparison of single integral non-linear viscoelasticity theories[J]. J Mech Phys Solids,1972,20(2):313-324.
    [8]
    Leaderman H. Large longitudinal retareded elastic deformation of rubberlike network polymers[J]. Polymer Trans Soc Rheol,1962,6(4):361-382.
    [9]
    Nayfef A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley,1979.
    [10]
    Sanders J A, Verhulst F. Averaging Methods in Nonlinear Dynamical Systems[M]. Berlin: Springer-Verlag,1985.
    [11]
    Touati D, Cederbaum G. Dynamic stability of nonlinear viscoelastic plates[J]. Int J Solids Struct,1994,31(18):2367-2376.
    [12]
    Suire G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear(elastica)bars under harmonic excitations[J]. Int J Mech Sci,1995,37(5):753-772.
    [13]
    Touati D, Cederbaum G. Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates[J]. Acta Mech,1995,113(2):215-231.
    [14]
    Argyris J. Chaotic vibrations of a nonlinear viscoelastic beam[J]. Chaos Solitons, Fractals,1996,7(1):151-163.
    [15]
    ZHANG Neng-hui, CHENG Chang-jun. Chaos behavior of viscoelastic plates in supersonic flow[A]. In: CHIEN Wei-zang, CHENG Chang-jun, DAI Shi-qiang, LIU Yu-lu, Eds.Proc 3rd Inter Conf Nonlinear Mech[C]. Shanghai: Shanghai University Press,1998,432-436.
    [16]
    ZHU Yan-yan, ZHANG Neng-hui, Miura F. Dynamical behavior of viscoelastic rectangular plates[A]. In: CHIEN Wei-zang, CHENG Chang-jun, DAI Shi-qiang, LIU Yu-lu, Eds. Proc 3rd Inter Conf Nonlinear Mech[C]. Shanghai: Shanghai University Press,1998,445-450.
    [17]
    程昌钧,张能辉. 粘弹性矩形板的混沌和超混沌行为[J]. 力学学报,1998,30(6):690-699.
    [18]
    陈立群,程昌钧. 用输出变量反馈线性化方法控制粘弹性板的混沌振动[J]. 应用数学和力学,1999,20(12):1229-1234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2820) PDF downloads(607) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return