CHEN Li-qun, CHENG Chang-jun. Dynamical Behavior of Nonlinear Viscoelastic Beams[J]. Applied Mathematics and Mechanics, 2000, 21(9): 897-902.
Citation: CHEN Li-qun, CHENG Chang-jun. Dynamical Behavior of Nonlinear Viscoelastic Beams[J]. Applied Mathematics and Mechanics, 2000, 21(9): 897-902.

Dynamical Behavior of Nonlinear Viscoelastic Beams

  • Received Date: 1999-07-09
  • Rev Recd Date: 2000-05-10
  • Publish Date: 2000-09-15
  • The integro-partial-differential equation that governs the dynamical behavior of homogeneous viscoelastic beams was established.The material of the beams obeys the Leaderman nonlinear constitutive relation.In the case of two simply supported ends,the mathematical model was simplified into an integro-differential equation after a 2-order truncation by the Galerkin method.Then the equation is further reduced to an ordinary differential equation which is convenient to carry out numerical experiments.Finally,the dynamical behavior of 1-order and 2-order truncation are numerically compared.
  • loading
  • [1]
    陈立群,程昌钧. 基于Galerkin截断的粘弹性结构动力学行为研究综述[J]. 自然杂志,1999,21(1):1-4.
    [2]
    Wojciech S, Klosowicz M, Nadolski W. Nonlinear vibrations of a simply supported viscoelastic inextensible beam and comparison of four methods[J]. Acta Mech,1990,85(1):43-54.
    [3]
    Moon F C, Holmes P J. A magnetoelastic strange attractor[J]. J Sound Vib,1979,65(2):285-296.
    [4]
    Abhyankar N S, Hall E K, Hanagud S V. Chaotic vibrations of beams: numerical solution of partial differential equation[J]. J Appl Mech,1993,60(1):167-174.
    [5]
    Suire, G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear(elastica) bars under harmonic excitations[J]. Int J Mech Sci,1995,37(5):753-772.
    [6]
    Argyris J. Chaotic vibrations of a nonlinear viscoelastic beam[J]. Chaos Solitons Fractals,1996,7(1):151-163.
    [7]
    Leaderman H. Large longitudinal retarded elastic deformation of rubberlike network polymers[J]. Polymer Trans Soc Rheol,1962,6(4):361-382.
    [8]
    Smart J, Williams J G. A comparison of single integral non-linear viscoelesticity theories[J]. J Mech Phys Solids,1972,20(2):313-324.
    [9]
    Nayfef A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley 1979.
    [10]
    Potapov V D, Marasanov A Y. The invstigation of the stability of elastic and viscoelastic rods under a stochastic excitation[J]. Int J Solids Struct,1997,34(9):1367-1377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2707) PDF downloads(1212) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return