ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.
Citation:
ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.
ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.
Citation:
ZHANG Nian-mei, HAN Qiang, YANG Gui-tong, XU Bing-ye. Anomalous Dynamics Response of Nonlinear Elastic Bar[J]. Applied Mathematics and Mechanics, 2000, 21(9): 909-915.
Anomalous Dynamics Response of Nonlinear Elastic Bar
1.
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P R China;
2.
Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, P R China
Received Date: 1999-09-03
Rev Recd Date:
2000-06-08
Publish Date:
2000-09-15
Abstract
The dynamics behavior of tension bar with periodic tension velocity was presented. Melinkov method was used to study the dynamic system.The results show that material nonlinear may result in anomalo us dynamics response.The subharmonic bifurcation and chaos may occur in the determined system when the tension velocity exceeds the critical value.
References
[1]
Moon F C, Shaw S W. Chaotic vibration of a beam with nonlinear boundary conditions[J]. Non-Linear Mech,1983,18(6).
[2]
Ramu Anantha S, Sankar T S, Ganesan R. Bifurcations, catastrophes and chaos in a pre-buckled beam[J]. Int J Nonlinear Mechanics,1994,29(3).
[3]
赵建宏,蔡中民. 非线性粘弹性圆柱杆在阶跃载荷速度下的迭代解[A]. 力学与工程应用[M]. 太原:山西高教联合出版社,1994.
[4]
蔡中民. 零级次弹性圆柱杆在阶跃速度拉伸时的惯性效应[J]. 工程力学,1993(增刊).
[5]
Lenci S, Menditto G, Tarantino A M. The chaotic resonance[J]. Eur J Mech A/Solid,1994,13(6).
[6]
Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Befurcations of Vector Fields[M]. Springer-Verlag,1983.
Proportional views