Fu Jingli, Chen Xiangwei, Luo Shaokai. Lie Symmetries and Conserved Quantities of Rotational Relativistic Systems[J]. Applied Mathematics and Mechanics, 2000, 21(5): 495-500.
Citation: Fu Jingli, Chen Xiangwei, Luo Shaokai. Lie Symmetries and Conserved Quantities of Rotational Relativistic Systems[J]. Applied Mathematics and Mechanics, 2000, 21(5): 495-500.

Lie Symmetries and Conserved Quantities of Rotational Relativistic Systems

  • Received Date: 1998-08-06
  • Rev Recd Date: 2000-01-01
  • Publish Date: 2000-05-15
  • The Lie symmetries and conserved quantities of the rotational relativistic holonomic and nonholonomic systems were studied. By defining the infinitesimal transformations' generators and by using the invariance of the differential equations under the infinitesimal transformations, the determining equations of Lie symmetries for the rotational ralativistic mechanical systems are established. The structure equations and the forms of conserved quantities are obtained. An example to illustrate the application of the results is given.
  • loading
  • [1]
    Bengtsson R,Frauendorf S.Quasiparticle spectr a near the yrast line[J].Nucler Physics,1979,A327:139~171.
    [2]
    罗绍凯.相对论性分析力学理论[J].教材通迅,1987,(5):31~34.
    [3]
    罗绍凯.相对论非线性非完整系统动力学理论[J].上海力学,1991,12(1):67~70.
    [4]
    Luo Shaokai.Relativistic variational principles and equations of motion high-order nonlinear nonholonomic system[A].In:Proc ICDVC[C].Beijing:Peking University Press,1990,645~652.
    [5]
    罗绍凯.变质量可控力学系统的相对论性变分原理与运动方程[J].应用数学和力学,1996,17(7):645~654.
    [6]
    Carmeli M.Field theory on R×S3 topology (Ⅰ~Ⅱ)[J].Foundations of Physics,1985,15(2):175~185.
    [7]
    Carmeli M.The dynamics of rapidly rotating bodies[J].Foundations of Physics,1985,15(8):889~903.
    [8]
    Carmeli M.Field theory on R×S3 topology (Ⅲ)[J].Foundations of Physics,1985,15(10):1019~1029.
    [9]
    Carmeli M.Rotational relativity theory[J].International Journal of Theoretical Physics,1986,25(1):89~94.
    [10]
    罗绍凯.转动系统的相对论性分析力学理论[J].应用数学和力学,1998,19(1):43~53.
    [11]
    李子平.经典和量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993,244~351.
    [12]
    梅凤翔.Birkhoff系统的Noether理论[J].中国科学(A辑),1993,23(7):709~717.
    [13]
    梅凤翔.李群和李代数对约束力学系统的某些应用[A].见:现代数学和力学(MMM-Ⅶ)[C].上海:上海大学出版社,1997,32~40.
    [14]
    Lutzky M.Dynamical symmetries and conserved quantities[J].J Phy A Math,1979,12(7):973~981.
    [15]
    赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J].力学进展,1993,23(3):360~372
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2942) PDF downloads(720) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return