Citation: | Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160. |
[1] |
Olver P J.Applications of Lie Group to Differential Equations[M].New York:Springer-Verlag,1986.
|
[2] |
Sen T,Tabor M.Lie symmetries of the Lorenz model[J].Physica D,1990,44(3):313~339.
|
[3] |
Smale S.Topology and mechanics[J].Inv Math,1970,10(2):305~331.
|
[4] |
Meyer K R.Symmetries and integrals in mechanics[A].In:M M Peixoto Ed.Dynamical Systems[C].New York:Academic Press,1973,259~272.
|
[5] |
Marsden J E,Weinstein A.Reduction of symplectic manifolds with symmetry[J].Rep Math Phys,1974,5(1):121~130.
|
[6] |
李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用[M].北京:科学出版社,1994.
|
[7] |
Mezie J,Wiggins S.On the integrability and perturbation of three-dimensional fluid flows with symmetry[J].J Nonlinear Science,1994,4(1):157~194.
|
[8] |
Ottino J M.The Kinematics of Mixing:Stretching,Chaos and Transprot[M].Cambridge:Cambridge University Press,1989.
|
[9] |
郭仲衡,陈玉明.具有不依赖于时间的不变量的三维常微分方程组的Hamilton结构[J].应用数学和力学,1995,16(4):283~288.
|
[10] |
张景炎.三维梯度共轭系统的全周期性[J].中国科学A辑,1983,13(5):426~437.
|
[11] |
Marsden J E,Ratiu T S.Introduction to Mechanics and Symmetry[M].New York:Springer-Verlag,1994.
|