ZHONG Wan-xie, WU Zhi-gang, GAO Qiang, A. Y. T. Leung, F. W. Williams. Modal Synthesis Method for Norm Computation of H∞ Decentralized Control Systems (Ⅰ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 111-120.
Citation: ZHONG Wan-xie, WU Zhi-gang, GAO Qiang, A. Y. T. Leung, F. W. Williams. Modal Synthesis Method for Norm Computation of H Decentralized Control Systems (Ⅰ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 111-120.

Modal Synthesis Method for Norm Computation of H Decentralized Control Systems (Ⅰ)

  • Received Date: 2002-12-09
  • Rev Recd Date: 2003-10-08
  • Publish Date: 2004-02-15
  • When using H techniques to design decentralized controllers for large systems,the whole system is divided into subsystems,which are analysed using H control theory before being recombined.An analogy was established with substructural analysis in structural mechanics,in which H decentralized control theory corresponds to substructural modal synthesis theory so that the optimal H norm of the whole system corresponds to the fundamental vibration frequency of the whole structure.Hence,modal synthesis methodology and the extended Wittrick-Williams algorithm were transplanted from structural mechanics to compute the optimal H norm of the control system.The orthogonality and the expansion theorem of eigenfunctions of the subsystems H control are presented in part(Ⅰ) of the paper.The modal synthesis method for computation of the optimal H norm of decentralized control systems and numerical examples are presented in part(Ⅱ).
  • loading
  • [1]
    Ho Y C, Mitter S K.Directions in Large-Scale Systems: Many-Person Optimization and Decentralized Control[M]. New York: Plenum Press, 1976.
    [2]
    Jamshidi M. Large-Scale Systems—Modeling, Control and Fuzzy Logic [M]. New Jersey: Prentice-Hall, 1997.
    [3]
    Cheng C F. Disturbances attenuation for interconnected systems by de-centralized control [J].International Journal of Control,1997,66(2):213—224. doi: 10.1080/002071797224702
    [4]
    Date R A, Chow J H. A parametrization approach to optimal H2 and H∞ decentralized control problems[J].Automatica,1992,29(2): 457—463.
    [5]
    Veillette R J, Medanic J V, Perkins W R. Design of reliable control systems [J].IEEE Transactions on Automatic Control,1992,37(3): 290—304. doi: 10.1109/9.119629
    [6]
    ZHONG Wan-xie, Zhong Xiang-xiang. Computational structural mechanics, optimal control and semi-analytical method for PDE [J].Computers & Structures, 1990,37(6):993—1004.
    [7]
    ZHONG Wan-xie, Howson W P, Williams F W. H∞ control state feedback and Rayleigh quotient [J]. Computer Methods in Applied Mechanics and Engineering,2001,191(3-5): 489—501. doi: 10.1016/S0045-7825(01)00286-9
    [8]
    ZHONG Wan-xie, Williams F W. H∞ filtering with secure eigenvalue calculation and precise integration [J]. International Journal for Numerical Methods in Engineering, 1999,46(7): 1017—1030. doi: 10.1002/(SICI)1097-0207(19991110)46:7<1017::AID-NME737>3.0.CO;2-I
    [9]
    钟万勰.H∞控制的变分法与计算[J].应用数学和力学,2000,21(12): 1271—1278.
    [10]
    钟万勰,杨再石.连续时间LQ控制主要本征对的算法[J].应用数学和力学,1991,12(1): 45—50.
    [11]
    钟万勰, 欧阳华江, 邓子辰. 计算结构力学与最优控制[M].大连: 大连理工大学出版社, 1993.
    [12]
    ZHONG Wan-xie, Williams F W. A precise time step integration method [J]. Proceedings of the Institution of Mechanical, Engineers Part C-Journal of ME, 1994,208(C6): 427—430. doi: 10.1243/PIME_PROC_1994_208_148_02
    [13]
    钟万勰. 矩阵黎卡提方程的精细积分 [J].计算结构力学及其应用, 1994, 11(2): 113—119.
    [14]
    ZHONG Wan-xie. The method of precise integration of finite strip and wave guide problems[A]. In:P K K Lee,L G Tham,Y K Cheung Eds.Proceedings of International Conference on Computational Methods in Structure and Geotechnical Engineering[C].Vol 1.Hong Kong:China Translation & Printing Service Ltd,1994,51—59.
    [15]
    ZHONG Wan-xie. Precise integration of eigen-waves for layered media[A].In:Arantese Oliveira,Joao Bento Eds.Proc EPMESC-5[C].Vol 2.Taejon, Korea: Techno-Press, 1995,1209—1220.
    [16]
    Leung A Y T.Dynamic Stiffness & Sub-Structures [M]. London: Springer, 1993.
    [17]
    王文亮, 杜作润. 结构振动与动力子结构分析[M].上海: 复旦大学出版社, 1985.
    [18]
    ZHONG Wan-xie, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems [J]. Journal of Vibration and Acoustics,Transactions of the ASME, 1997,119(3): 334—340. doi: 10.1115/1.2889728
    [19]
    钟万勰. 应用力学对偶体系[M]. 北京: 科学出版社, 2002.
    [20]
    Courant R, Hilbert D.Methods of Mathematical Physics(Vol Ⅰ)[M]. New York: Interscience Publishers Inc, 1953.
    [21]
    Arthurs A M.Complementary Variational Principles [M]. Oxford: Clarendon Press, 1980.
    [22]
    钟万勰, 吴志刚, 高强,等.H∞分散控制系统范数计算的模态综合法(Ⅱ)[J].应用数学和力学, 2004, 25(2):121—127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2762) PDF downloads(1003) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return