Yang Guangchong. Quasi-Weak Convergence with Applications in Ordered Banach Space[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1198-1202.
Citation: Yang Guangchong. Quasi-Weak Convergence with Applications in Ordered Banach Space[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1198-1202.

Quasi-Weak Convergence with Applications in Ordered Banach Space

  • Received Date: 1998-02-16
  • Rev Recd Date: 1999-05-11
  • Publish Date: 1999-11-15
  • In the paper quasi-weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.
  • loading
  • [1]
    Amann H.Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].SIAM Review,1976,18(4):620~709.
    [2]
    Ladde G S,Lakshmikantham V,Vatsala A S.Monotone Iterative Techniques for Nonlinear Differential Equations[M].London:Pitman,1985.
    [3]
    Deimling K.Nonlinear Function Analysis[M].Berlin,Heidelherg:Springer-Verlag Heidelherg,1985.
    [4]
    孙径先,非连续的增算子的不动点定理及其对含间断项的非线性积分方程的应用[J].数学学报,1988,31(1):101~107.
    [5]
    Guo Dajun,Lakshmikanthan V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Analysis Theory Methods & Applications,1987,11(5):623~632.
    [6]
    杨荣先,杨光崇.积空间中的不动点及其应用[J].工程数学学报,1996,13(2):27~32.
    [7]
    夏道行,等.实变函数与泛函分析(上册)[M].北京:人民教育出版社,1978.
    [8]
    郑维行,等.实变函数与泛函分析概要(下册)[M].北京:人民教育出版社,1980.
    [9]
    郭大钧.非线性泛函分析[M].济南:山东科技出版,1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2639) PDF downloads(729) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return