Liu Xianbin, Chen Qiu, Chen Dapeng. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅱ)[J]. Applied Mathematics and Mechanics, 1999, 20(10): 997-1003.
Citation: Liu Xianbin, Chen Qiu, Chen Dapeng. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅱ)[J]. Applied Mathematics and Mechanics, 1999, 20(10): 997-1003.

On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅱ)

  • Received Date: 1998-05-29
  • Publish Date: 1999-10-15
  • Foraco-dimension two bifurcation system on a three-dimensional central manifold, which is parametrically excited by a real noise, a rather general model is obtained by assuming that the real noise is an output of a linear filter system-a zeromean stationary Gaussian diffusion process which satisfies detailed balance condition. By means of the asymptotic analysis approach given by L. Arnold and the expression of the eigenvalue spectrum of Fokker-Planck operator, the asymptotic expansions of invariant measure and maximal Lyapunov exponent for the relevant system are obtained.
  • loading
  • [1]
    Ito K,McKean H P,Jr.Diffusion Processes and Their Sample Paths[M].New York:Springer-Verlag,1965.
    [2]
    Karlin S,Taylor H M.A Second Course in Stochastic Processes[M].New York:Academic Press,1981.
    [3]
    刘先斌.随机力学系统的分叉行为与变分方法研究[D].博士学位论文.成都:西南交通大学,1995.
    [4]
    刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究[J].力学进展,1996,26(4):437~452.
    [5]
    刘先斌,陈虬,孙训方.白噪声参激一类余维2分岔系统研究[J].力学学报,1997,29(5):563~572.
    [6]
    朱位秋.随机振动[M].北京:科学出版社,1992.
    [7]
    Lin Y K,Cai G Q.Stochastic stability of nonlinear systems[J].Int J Nonlinear Mech,1994,29(4):539~555.
    [8]
    Ariaratnam S T, Xie W C.Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J].ASME J Appl Mech,1993,60(5):677~682.
    [9]
    Arnold L,Wihstutz V.Lyapunov Exponents[M].Lecture Notes in Mathematics,1186,Berlin:Springer-Verlag,1986.
    [10]
    Arnold L,Papanicolaou G,Wihstutz V.Asympototic analysis of the Lyapunov exponents and rotation numbers of the random oscilltor and applications[J].SIAM J Appl Math,1986,46(3):427~450.
    [11]
    刘先斌,陈大鹏,陈虬.实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)[J].应用数学和力学,1999,20(9):902~913.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2357) PDF downloads(629) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return