Citation: | Dao Zhengde, Guo Boling, Lin Guoguang. The Fractal Structure of Attractor for the Generalized Kuramoto-Sivashinsky Equations[J]. Applied Mathematics and Mechanics, 1998, 19(3): 243-256. |
[1] |
Guo Boling,The global attractors for the periodic initial value problem of generalized Kuramoto-Sivashinsky type equations,Progress in Natural Science,3(4)(1993),327-340.
|
[2] |
Gao Boling,The existence and none xistence of a global smooth solution for the initial value problem of gener alized Kuramoto-Sivashinsky type equations,J.Math.Res.&Expo,11(1),1991,57-65.
|
[3] |
P.Constantin,C.Foias and R.Temam,Mem.Amer.Math.Soc.,N314(1985).
|
[4] |
P.Constantin,C.Foias,B.Nicolaenko and R.Temam,Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations Springer-Verlag(1989).
|
[5] |
A.Eden,C.Foias,B.Nicolaenko and R.Temam,Inertial sets for dissipative evolution equations,IMA.Preprint Series 812(1991).
|
[6] |
A.V.Babin and M.I.Vishik,Regular attractors of semigroups and evolution equations,J.Math.Pures Appl.,62(3)(1983),441-491.
|
[7] |
C.Foias and R.Temam,The algebra approximation of attractors,the finite dime nsional case,Physics D,32(1988),163-182.
|
[8] |
K.Promislom and R.Temam,Localization and approximation of attractors for the Ging burg-Landaw equation,J.Dynam.Diff.Eq.,3(4)(1991),491-514.
|
[9] |
Dai Zheng de,Guo Boling and Gou Hong jun,The inertial fractal sets for no nlinear schroding erequations,J.Part.Diff.Eq.,8(1)(1995),37-81.
|