Dao Zhengde, Guo Boling, Lin Guoguang. The Fractal Structure of Attractor for the Generalized Kuramoto-Sivashinsky Equations[J]. Applied Mathematics and Mechanics, 1998, 19(3): 243-256.
Citation: Dao Zhengde, Guo Boling, Lin Guoguang. The Fractal Structure of Attractor for the Generalized Kuramoto-Sivashinsky Equations[J]. Applied Mathematics and Mechanics, 1998, 19(3): 243-256.

The Fractal Structure of Attractor for the Generalized Kuramoto-Sivashinsky Equations

  • Received Date: 1996-07-07
  • Rev Recd Date: 1997-09-10
  • Publish Date: 1998-03-15
  • In this paper,the g eneralized Kuramoto-Sivashinsky e quations(GKS)with periodic initial boundar y value pr oblem are consider ed and the constr uction o f ine rtial sets in space H2 is given. Furthemore,this paper gives and proves the fractal structure of attractors for GKS equations,and find out an exponentially approxim ating sequence of compact fractal localizing sets of the attractors, the sere sults sharpen and improve the conclusions of the inertial sets and attractor for GKS equation in[1,3,5,7],which describe a kind of geometrical structure of the attractors.
  • loading
  • [1]
    Guo Boling,The global attractors for the periodic initial value problem of generalized Kuramoto-Sivashinsky type equations,Progress in Natural Science,3(4)(1993),327-340.
    [2]
    Gao Boling,The existence and none xistence of a global smooth solution for the initial value problem of gener alized Kuramoto-Sivashinsky type equations,J.Math.Res.&Expo,11(1),1991,57-65.
    [3]
    P.Constantin,C.Foias and R.Temam,Mem.Amer.Math.Soc.,N314(1985).
    [4]
    P.Constantin,C.Foias,B.Nicolaenko and R.Temam,Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations Springer-Verlag(1989).
    [5]
    A.Eden,C.Foias,B.Nicolaenko and R.Temam,Inertial sets for dissipative evolution equations,IMA.Preprint Series 812(1991).
    [6]
    A.V.Babin and M.I.Vishik,Regular attractors of semigroups and evolution equations,J.Math.Pures Appl.,62(3)(1983),441-491.
    [7]
    C.Foias and R.Temam,The algebra approximation of attractors,the finite dime nsional case,Physics D,32(1988),163-182.
    [8]
    K.Promislom and R.Temam,Localization and approximation of attractors for the Ging burg-Landaw equation,J.Dynam.Diff.Eq.,3(4)(1991),491-514.
    [9]
    Dai Zheng de,Guo Boling and Gou Hong jun,The inertial fractal sets for no nlinear schroding erequations,J.Part.Diff.Eq.,8(1)(1995),37-81.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1961) PDF downloads(543) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return