Bi Qinsheng, Chen Yushu, Wu Zhiqiang. Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces[J]. Applied Mathematics and Mechanics, 1998, 19(2): 113-120.
Citation: Bi Qinsheng, Chen Yushu, Wu Zhiqiang. Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces[J]. Applied Mathematics and Mechanics, 1998, 19(2): 113-120.

Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces

  • Received Date: 1995-04-15
  • Rev Recd Date: 1996-06-30
  • Publish Date: 1998-02-15
  • By introducing nonlinear frequency,using Floquel theory and referring to the characteristics of the solution when it passes through the transition bounaries all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitatins as well as the possible ways to chaos are studied in this paper.
  • loading
  • [1]
    W.H.Steeb.W.Erig and A,Kunick.Chaotic behaviour and limit cycle behaviour ofanharmonic systems with periodic external perturbations,Physics Letters A,93,6(1983),267-270.
    [2]
    S.Sato,M.Sano and Y.Sawada,Universal scaling property in bifurcation structure ofDuffing's and generalized Duffing 's equation,Physical Review A,28,3(1983),1654-1658.
    [3]
    Y.Ueda and N.Slamatsu,Chaotically transitional phenomena in the forced negativeresistance oscillator,Institute of Electrical Engineers Transactions on Circuits System,CAS-28,2(1981),217-223.
    [4]
    Q.S.Lu and C.W.S.To,Principle resonance of a nonlinear system with two-frequencyparametric and self-excitations,Nonlinear Dynamics,2,6(1991),419-444.
    [5]
    陆启韶、黄克累、非线性动力学、分岔和混沌,全国一般力学发展与展望会议,哈尔滨(1993),11-18.
    [6]
    K.Yagasaki,M.Sakata and K.Kimura,Dynamics of weakly nonlinear system subjectedto combined parametric and external excitation,Trans.ASME,J.Appl.Mech.,57,1(1990),209-217.
    [7]
    K.Yagasaki,Chaos in weakly nonlinear oscillator with parametric and externalresonance,Trans.ASME,J.Appl.Mech.58.1(1991),244-250.
    [8]
    K.Yagasaki,Chaotic dynamics of a quasi-periodically forced beam,Trans.ASME.J.Appl.Mech.,59.1(1992),161-167.
    [9]
    陈予恕、王德石,轴向激励下梁的混沌运动,非线性动力学学报,1(2)(1993),124-135.
    [10]
    A.Y.T.Leung and T.C.Fung,Construction of chaotic regions,J.Sound Vib.,131,3(1989),445-455.
    [11]
    Szemplinska-Stupnicka and Bajkowski.The 1/2 subharmonic resonance its transition tochaos motion in a nonlinear oscillator,IFTR Reports 4,1(1986),67-72.
    [12]
    R.Van Dooren.On the transition from regular to chaotic behaviour in the Duffingoscillator.J.Sound Vib.,123.2(1988).327-339.
    [13]
    T.Kapitaniak,Combined bifurcations and transition to chaos in a nonlinear oscillatorwith two external periodic forees.J.Sound Vib.121,2(1988),259-268.
    [14]
    T.Kapitaniak.Chaotic distribution of nonlinear systems perturbed by random noise.Physical Lefters A.116,6(1986).251-254.
    [15]
    T.Kapitaniak,A property of a stochastic response with bifurcation to nonlinear system.J.Sound Vib.,107.1(1986).177-180.
    [16]
    V.I.Arnold,Ordinary Differential Equation.M.I.T.Press(1973),22-26,48-52.
    [17]
    A.H.Nayfeh and D.T.Mook.Perturbation Methods.John Wiley & Sons,New York(1979),300-313.
    [18]
    R.Raty and J.Von Boehm,Absence of inversion-symmetric limit cycles of even periodand chaotic motion of Duffing oscillator.Physics Letters A.103,6(1984),288-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2760) PDF downloads(786) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return