Citation: | Liu Chuanhan. Fourth-Order Accurate Difference Method for the Singular Perturbation Problem[J]. Applied Mathematics and Mechanics, 1997, 18(10): 921-929. |
[1] |
N.S.Bakhvalov,Koptimaizacii metodov resheniya kraevykh zacach prinalichii pogranichnogo sloya,Zh.Vychisl.Mat.Mat.Fiz.,9(1969),841-859.
|
[2] |
E.P.Doolan,J.J.H.Miller and W.H.A.Schilders,Uniform Numerical Methods for Problems with Initial and Boundary Layers,Boole Press,Dublin(1980).
|
[3] |
A.M.Ilin,Differencing scheme for a differential equation with a small perameter affecting the highest derivative,Math.Notes.Acad.Sci.USSR,6(1969),569-602.
|
[4] |
J.Thomas King,Introduction to Numerical Compulation,McGraw-Hill Inc.(1984).
|
[5] |
E.O' Riordan and M.Stynes,An analysis of a superconvergence result for a singularly perturbed boundary value problem,Math.Comp.,46(1986),81-92.
|
[6] |
J.M.Ortega and W.C.Rheinboldt,Interative Solution qf Nonlinear Equations in Several Variables,lst Ed.Academic Press,New York London(1970).
|
[7] |
R.Vulanovic,A uniform numerical method for quasilinear singular perturbation problems without turning points.Computing,41(1989),97-106.
|
[8] |
G.I.Shishkin,Raznostnaya skhema na neravnomernoi setke dlya differential nogouravneniya s malym parametrom pristarshei proizvodnoi.Zh.Vychisl.Mat.Mat.Fiz.,23(1983),609-619.
|
[9] |
M.Stynes and E.O' Riordan,A uniform accurate finite element method for a singular perturbation problem in conservative form.SIAA.J.Numer.Anal.,23,2(1986),369-375.
|
[10] |
Sun Qiren.Uniformly convergent diffcrence method for a class of singular perturbation problem of fourth-order quasilinear ordinary differential equation,Proceedings of MMM,Shanghai(1987).
|
[11] |
R.Vulanovic.On a numerical solution of a type of singularly perturbed boundary valueproblem by using a special discretization mesh,Zb.Rad.Prir.Mat.Fak.Univ.Novom.sadu Ser.Mat.13(1983),187-201.
|
[12] |
王国英、陈明伦,四阶常微分方程奇异摄动问题的二阶精度差分解,应用数学和力学,11,5(1990),463-468.
|