Citation: | Yang Xiaoping, Zhou Shuzhi, Li Guangyao. On an Axially Symmetric Elastic-Plastic Torsion Problem[J]. Applied Mathematics and Mechanics, 1997, 18(7): 657-668. |
[1] |
M.Biroli and U.Mosco.Stability and homogenization for nonlinear variationalinequalities with irregular obstacles and quadratic growth,Nonli.Anal.,7,1 (1983),41~60.
|
[2] |
J.M.Bony,Principle du maximum dans les espaces de Sobolev,C.R.A.S.,26(1967),333~336.
|
[3] |
C.W.Cryer,The solution of the axisymmetric elastic-plastic torsion of a shaft usingvariational inequalities.J.Math.Anal.Appl.,7(1980),535~570.
|
[4] |
L.C.Evans,A second order elliptic equation with gradient constraint,Communicationsin PDEs.,4(1979),557~572.
|
[5] |
M.Giaquinta,Multiple Integrals in the Calculus of Variations and Nonlinear EllipticSystems,Princeton Univ.Press,Princeton (1983).
|
[6] |
D.Gilbary and N.S.Trudinger.Elliptic Partial Differential Equations of Second Order,Spring-Verlag,New York (1983).
|
[7] |
A.Huber,On the uniqueness of generalized axially symmetric potentials,Ann.of Math.,60,2 (1954),351~358.
|
[8] |
H.Ishii and S.Koike,Boundary regularity and uniqueness for an elliptic equation withgradient constraint.Comm.in PDEs.,8,(1983),317~346.
|
[9] |
D.Kinderlehrer and G.Stampacchia,An Introduction to Variational Inequalities andTheir Applications,Acad.Press.New York (1980).
|
[10] |
T.W.Ting.Elastic-plastic torsion of convex cylindrical bars,J.Math.Mech.,1(1969),531~551.
|
[11] |
T.W.Ting.Elastic-plastic torsion problem over multiply connected domains,Ann.Scuola Norm Sup.,Pisa.4,(1977),291~312.
|
[12] |
M.Wiegner,The C-character of solutions of sccond order elliptic equations withgradient constraint,Comm.in PDEs.,6,3 (1981).361~371.
|
[13] |
杨孝平,关于无界系数的非线性椭圆变分不等式,湖南大学学报(数学专辑),15(1)(1988),222-231.
|
[14] |
周叔子,关于一类轴对称的自由边界问题,应用数学学报,6(4)(1983),420-432.
|
[15] |
周叔子,《变分不等式及其有限元方法》,湖南大学出版社.长沙(isas).
|
[1] | BAI Enpeng, XIONG Xiangtuan. A New Regularization Method for Solving Sideways Heat Equations[J]. Applied Mathematics and Mechanics, 2021, 42(5): 541-550. doi: 10.21656/1000-0887.410290 |
[2] | WANG Zhen, DENG Da-wen. Eigenvalues of the Deformation Tensor and Regularity Estimates for the Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1279-1288. doi: 10.21656/1000-0887.370355 |
[3] | LIU Cong-jian, CHEN Wen, WANG Hai-tao, GU Yan. Adaptive Fast Multipole Regularized Meshless Method for Large-Scale Three Dimensional Potential Problems[J]. Applied Mathematics and Mechanics, 2013, 34(3): 259-271. doi: 10.3879/j.issn.1000-0887.2013.03.006 |
[4] | GONG Zhao-xin, LU Chuan-jing, HUANG Hua-xiong. Effect of the Regularized Delta Function on the Accuracy of the Immersed Boundary Method[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1352-1365. doi: 10.3879/j.issn.1000-0887.2012.11.010 |
[5] | XIAO Hai-bin. Regularity and Finite Dimensionality of Attractor for Plate Equation on Rn[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1372-1381. doi: 10.3879/j.issn.1000-0887.2010.11.010 |
[6] | HE Guo-qiang, MENG Ze-hong. A Newton Type Iterative Method for Heat-Conduction Inverse Problems[J]. Applied Mathematics and Mechanics, 2007, 28(4): 479-486. |
[7] | HUANG Dai-wen, GUO Bo-ling. On the Two-Dimensional Large-Scale Primitive Equations in Oceanic Dynamics (Ⅱ)[J]. Applied Mathematics and Mechanics, 2007, 28(5): 532-538. |
[8] | LI Hong-fang, FU Chu-li, XIONG Xiang-tuan. Optimal Error Bound in a Sobolev Space of Regularized Approximation Solutions for a Sideways Parabolic Equation[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1128-1134. |
[9] | CHEN Dao-zheng, JIAO Zhao-ping. Application of Penalty Function Method in Isoparametric Hybrid Finite Element Analysis[J]. Applied Mathematics and Mechanics, 2005, 26(8): 929-936. |
[10] | ZHANG Li-ping, GAO Zi-you. Global Linear and Quadratic One-Step Smoothing Newton Method for Vertical Linear Complementarity Problems[J]. Applied Mathematics and Mechanics, 2003, 24(6): 653-660. |
[11] | XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433. |
[12] | ZHOU Huan-lin, NIU Zhong-rong, WANG Xiu-xi. Regularization of Nearly Singular Integrals in the Boundary Element Method of Potential Problems[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1069-1074. |
[13] | KANG Tong, YU De-hao. A Posteriori Error Estimate of the DSD Method for First-Order Hyperbolic Equations[J]. Applied Mathematics and Mechanics, 2002, 23(6): 653-660. |
[14] | XIU Nai-hua, GAO Zi-you. Convergence of a Modified SLP Algorithm for the Extended Linear Complementarity Problem[J]. Applied Mathematics and Mechanics, 2001, 22(5): 534-540. |
[15] | Wang Guocan, Ding Peizhu, Zheng Chengde. Existence of Boundary Value Problems for TFD Equation in Quantum Mechanics[J]. Applied Mathematics and Mechanics, 2000, 21(2): 215-220. |
[16] | Cai Chongxi, Lin Changhao. Phragmén-Lindelöf Alternative Results for the Initial Boundary Problem of Stokes Equation[J]. Applied Mathematics and Mechanics, 1996, 17(8): 689-698. |
[17] | Dong Qinxi, Huang Xiankai. On the Existence and Stability of Solutions for Seml-Homogeneous Boundary Value Problems[J]. Applied Mathematics and Mechanics, 1995, 16(11): 997-1001. |
[18] | Kou Shushun. The Existence of the Solution for Linear Complementary Problem[J]. Applied Mathematics and Mechanics, 1995, 16(7): 641-644. |
[19] | He Qing, Ji Chun-ci. The Existence of Solution of a Class of Two-Order Quasilinear Boundary Value Problem[J]. Applied Mathematics and Mechanics, 1992, 13(10): 941-944. |
[20] | Huang Wei-zhang. The Estimation of Solution of the Boundary Value Problem of the Systems for Quasi-Linear Ordinary Differential Equations[J]. Applied Mathematics and Mechanics, 1992, 13(8): 719-727. |