Citation: | Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432. |
[1] |
V.1.Arnold,Geometrical Method in the Theory of Ordinary Dijjerential Equations,Springer-Verlag,Berlin(1983).
|
[2] |
R.I.Bogdanov,Bifurcation of the limit cycle of a family of plane vector field,Sel.Math.Sov.,1(1981),373-387.
|
[3] |
R.I.Bogdanov,Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues,Sel.Math.Sov.,1(1981),389-421.
|
[4] |
A.D.Bruno,Local Methods in Nonlinear Differential Equations,Springer-Verlag,Berlin(1989).
|
[5] |
S.N.Chow and J.K.Hale,Methods of Bifurcation Theory,Springer-Verlag,Berlin(1982).
|
[6] |
S.N.Chow and D.Wang,Normal form of bifurcating periodic orbits,Multi-parameter bifurcation theory,M.Golubitsky and J.Guckenheimer(eds),Contemporary Math.,56(1986),9-18.
|
[7] |
R.Cushman and J.Sanders,Nilpotent normal forms and representation theory of s1(2,R),Multi-parameter bifurcation theory,M.Golubitsky and J.Gguckenheimer(eds),Contemporary.Math.,56(1986),31-51.
|
[8] |
R.Cushman and J.Sanders;Splitting algorithm for nilpotent normal forms,Dynamics and Stabilitv oJSystems.2(1988),235-246.
|
[9] |
R.Cushman,A.Deprit and R.Mosad,Normal forms and representation theory,J.Math.Phys.,24(1983),2103-2116.
|
[10] |
C.Elphick,E.Tirapegui,M.E.Bracher,P.Coullet and G.Iooss,A simple global characterization for normal forms of singular vector fields.Phys.D.,29(1987),95-117.
|
[11] |
J.Guckenheimer and P.Holmes.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,Springer-Verlag,Berlin(1983).
|
[12] |
R.Rand and D.Armbruster,Perturbation Method,Bifurcation Theory and Computer Algebra,Springer-Verlag,Berlin(1987).
|
[13] |
F.Takens,Normal forms for certain singularities of vector fields,Ann.Inst.Fourier,23(1973),163-195.
|
[14] |
F.Takens,Singularities of vector fields,Publ.Math.IHES,43(1974),47-100.
|
[15] |
P.Holmes and D.A.Rand,Phase portraits and bifurcations of the nonlinear oscillator x+(a+yx2)x+βx+δ3=0,Int.J.Non-Linear Mech.,15(1980),449-458.
|
[16] |
P.Holmes,Center manifolds,normal forms and bifurcations of vector Gelds with application to coupling between periodic and steady motions,Phy.D.,2(1981),449-481.
|
[17] |
A.K.Bajaj,Bifurcations in a parametrically excited nonlinear oscillator,Int.J.Nonlinear Mech.,22(1987),47-59.
|
[18] |
A.K.Bajaj,Nonlinear dynamics of tubes carrying a pulsatile folw,Dynamics and Stability of Systems,2(1987),19-41.
|
[19] |
J.Shaw and S.W.Shaw,The effects of unbalance on oil whirl,Nonlinear Dynamic's,1(1990),293-311.
|
[20] |
N.Sri.Namachchivaya,Co-dimension two bifurcations in the presence of noise,ASME,J.Appl.Mech.,58(1991),259-265.
|
[21] |
W.Zhang and Q.Z.Huo,Degenerate bifurcations of codimension two in nonlinear oscillator under combined parametric and forcing excitation,Acta Mechanica Sinica,24(1992),717-727.
|
[22] |
W.Zhang and Q.Z.1-Iuo,Degenerate bifurcations of codimension two in nonlinear oscillator for 1/2 subharmonic resonance-primary parametric resonance,Theory,Method and Application of Nonlinear Mechanics,C.J.Cheng and Z.H.Guo(eds),Modern Mathematics and Mechanics(MMM) IV(1991),431-437.
|
[23] |
W.Zhang and Q.Z.Huo,Bifurcations of the cusp singularity in a nonlinear oscillator under combined parametric and forcing excitation,J.Vibration Engineering,6(1992),355-366.
|
[24] |
Y.S.Chen and J.Xu,Periodic respones and bifurcation theory of nonlinear Hill system,J.Nonlinear Dynamics in Science and Technology,1(1993),1-14.
|
[25] |
F.Dumortier,R.Roussarie aid J.Sotomayor,Generic 3-parameter families of vector fields on the plane,unfolding a singularity with nilpotent linear part the cusp case,Ergodic Theory and Dynamical,Systems,7(1987),375-413.
|
[26] |
F.Dumortier,R.Roussarie and J.Sotomayor,Generic 3-parameter families of planar vector fields,unfolding of saddle,focus and elliptic singularities with nilpotent linear parts,Preprint.(1990).
|
[27] |
F.Dumortier and P.Fiddelares,Quadratic models for generic local 3 parameter bifurcations on the plane,Trans.Amer.Math.Soc.,326(1991),101-126.
|
[28] |
D.Wang,An introduction to the normal form theory of ordinary differentital equations,Advances in Mathematics,19(1990),38-71.
|
[29] |
W.Zhang,Computation of the higher order normal form and codimension three degenerate bifurcation in a nonlinear dynamical system with Z2-symmetry,Acta Mechanica Sinica,25(1993),548-559.
|
[30] |
A.E.Taylor and D.C.Lay,Introduction to Functional Analysis,John Wiley and Sons,Interscience(1980).
|